THEORY OF

SUSTAINED OPTIMAL CHALLENGE IN TEACHING AND LEARNING

- Bloom suggests teaching 90\% of the materials
- to achieve mastery learning
- In practice, students move up to the next level just by learning
- 70\% (author's current department)
- 60\% (author's current university)
- 40\% (author's undergraduate institute)
- Even only 33\% (author's institution from grade 1 to 12)
- The exposure to the advanced level topics
- prioritized more than the mastery learning
- in many education systems
- How much material?
- What is the difficulty level?
- What is mastery?
- The following is an excerpt from the learning outcomes of a course
"Student should be able to apply anthropometry to design, redesign, develop, and evaluate workstations."
- To what breadth and depth should we go?
- Yerkes-Dodson law
- Arousal vs Performance
- Teaching \& Learning
- Mostly difficult task
- Unfamiliar \& Complex
- Optimal arousal

Students'
Aptitudes
:---:
Expectations

- Should we teach
- 100\%
- Students: learned 100\%
- 90%
- 70\%
- 60\%
- 33%
- 10-20\%

- Students: Learned Nothing!

Content Difficulty Level

- To avoid too many easies or difficulties
- Normal (Gaussian) distribution of difficulty levels
- to match students' aptitude levels
- to achieve optimal performance
- How do we keep the challenge Normally distributed?
- Central Limit Theorem,
- "The distribution of mean or sum from a large sample of a sufficiently large number of identical and independent random variables will be approximately normally distributed regardless of their original distributions."
- Multiple assessment points?
- Normally distributed content difficulty level
- to achieve the optimal challenge
- for most students

- 10-13 assessments
- 3-credit hour course
- semester system
- Adjusting the difficulty level
- based on the performance in the previous topics.
- Poor performance
- too difficult
- High performance
- too easy
- Mid-semester student feedback
- Making sure, we don't lose them too early
- Applying the sustain optimal challenge theory
- A wide range of multidisciplinary courses taught
- Undergraduate
- Introductory Statistics
- Mechanics of Materials
- Fluid Power
- Undergraduate/Graduate
- Quality Management Systems
- Human Factors and Ergonomics
- Graduate
- Design of Experiments

Normality test (Chi-Square) on the grade distributions

Normal	Mean Grade	p-value
Introductory Statistics ${ }^{\text {st }}$	85	0.014
Introductory Statistics $2^{\text {nd }}$	84	0.005
Mechanics of Materials $1^{\text {st }}$	80	0.440
Mechanics of Materials $2^{\text {nd }}$	79	0.269
Quality Management Systems $1^{\text {st }}$	80	0.138
Quality Management Systems $\mathbf{2}^{\text {nd }}$	78	0.020
Human Factors \& Ergonomics $1^{\text {st }}$	82	0.129
Design of Experiments $1^{\text {st }}$	90	0.008
*Bold faced p -values indicate non-normal d Taught, $2^{\text {nd }}=$ Second Time Taught. Influentia	nificance level of re removed befor	= Fist Time

Second
 Time
 Taught

Introductory Statistics
Class Size $=45($ Student Evaluation $=4.6 / 5)$

504030200

Mechanics of Materials Class Size $=37$ (Student Evaluation $=3.7 / 5$)

First
Time
Taught

Introductory Statistics

Letter Grade
Quality Management Systems

- The mean student evaluations $=4.25 / 5$
- Most frequent positive feedback

1. instructor is knowledgeable
2. instructor really cares for us
3. focus on student learning
4. problem solving step by step
5. learned a lot from this course
6. very effective use of class time
7. approachable and easy to talk
8. good response to students' questions
9. fair grading
10. clear expectation
11. small deadlines.

- Theory of the Sustained Optimal Challenge has helped student learning primarily in three ways

1. Frequent Assessments and Feedback in a Consistent and Timely Manner for Continual Improvement
2. Matching the Instructors' Expectations with the Students' Aptitudes
3. Significant Reduction in Variation in Student Learning

- Frequent Assessments and Feedback in a Consistent and Timely Manner for Continual Improvement

- Matching the Instructors' Expectations with the Students' Aptitudes
- The distribution of grades for 6 out of 8 courses
- Observed to be normal
- As expected from the central limit theorem
- Sounds like a random assignment of grade!
- The author is not suggesting any mean grade
- Grade must reflect learning
- The mean grade/challenge could follow the institution policy in the Theory of Sustained Optimal Challenge
- Significant Reduction in Variation in Student Learning
- As the number of assessment points increase, the distribution converge from flatter to a narrower Normal distribution.

- Adjusting the content difficulty level over the course of learning
- Independent random variables?
- The assessment process may not be compared to a fair die
- Take-home tests
- Not a random variable any more!
- Each student (if not identical twins) with distinctive aptitudes
- Identical random variables?
- The learning outcomes have not been compared to the courses taught using the theory of sustained optimal challenge and other methods of instruction.
- This research presented a theory to challenge students optimally over the course of teaching and learning
- The theory suggests that frequent assessments and regular feedback help students' learning primarily in three ways

1. continual improving over the course of teaching and learning
2. matching the instructors' expectations with the students' aptitudes
3. finally, reducing the variation in student learning.

- The instructor will be able to set the depth of the contents and the speed of instructions to prepare students to cope with the future challenges in the higher education or the workforce.

THANK YOU!

SHAHEEN AHMED $>\underset{18,8}{2} 150$

