
CHAPTER 8:  Stellar Atmospheres
In previous chapters we examined the nature of radiation and its interactions with matter.  In 

this chapter we will use our knowledge of how radiation flows through matter to develop a plan 
to establish the structure of a stellar atmosphere.  Our first step  is to understand how the matter in 
a gas interacts with itself and what parameters we can use to characterize the gas.

Gas Properties
A gas is composed of particles of matter that move independently.  The gas particles do 

interact with each other through collisions, exchanging momentum and energy, and normally 
reach a steady state in which the bulk gas properties obey a few basic relations, as shown below.

Particle Velocities
In Chapter 6 it was noted that broadened line profiles may  result from gas particles moving 

along the observer's line of sight; the distribution of velocities along this single direction was 
given by Boltzmann's equation.  We now wish to expand this discussion to include motions in all 
three directions, which will allow us to determine the pressure exerted by the gas.

To begin, let vx be the velocity of a particle along the x axis, either positive or negative; the 

kinetic energy of this particle will be E = 1/2 mvx
2.  Now let N(vx) dvx be the number density of 

particles with an x velocity in the range vx → vx +dvx , and let  N be the total number density of 
particles (for which the average value of vx is 0).  Assuming an ideal gas – for which sufficient 
states are available that particles are not limited by statistical weights – then the fraction of 
particles N(vx) dvx /N with an x-velocity component vx is given by a Boltzmann equation:

Eq. 8.1  N(vx )dvx
N

= Ce−E /kT dvx = Ce
−mvx

2 /2kT dvx  

The quantity  C is a normalization constant, found by  requiring that a sum over all the 
possible x velocities yields the total number density N.

Eq. 8.2  N(vx )dvx∫ = N ⋅C e−mvx
2 2kT

−∞

∞

∫ dvx = N ⇒ 1
C

= 2 e−mvx
2 2kT

0

∞

∫ dvx

Using e−ax
2

0

∞

∫ = 1
2

π
a  , where a =m/2kT, we can solve for C :
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Eq. 8.3  
1
C

= 2 π

2 m
2kT

=
2πkT
m

⇒ C =
m

2πkT

This provides the distribution function for the x velocity:

Eq. 8.4  N(vx )dvx
N

= m
2πkT

e−mvx
2 /2kT dvx

Similar equations can be written for velocities in the y and z directions.  Multiplying these all 
together gives the fraction of particles with vx , vy , and vz all in the given ranges:

Eq. 8.5  

N(vx )dvx
N

N(vy )dvy
N

N(vz )dvz
N

= m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
e
− m
2kT

vx
2+vy

2+vz
2( )dvxdvydvz

=
N(vx ,vy ,vz )dvxdvydvz

N

We can simplify our notation by substituting dvxdvydvz= d
v  = v2dv dΩ and vx

2 + vy
2 + vz

2 = v2 
to yield the following:

Eq. 8.6  
 

N(v)dv
N

= m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
e
−mv

2

2kT v2dvdΩ

In most of our applications, the direction of particle travel is not of particular interest, but the 
speed of the particles is.  Thus, we may integrate this equation over all angles to give the 
Maxwellian velocity distribution:

Eq. 8.7  N(v)dv
N

= m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
e
−mv

2

2kT 4π v2dv

Figure 8.1:  The Maxwellian velocity distribution

N(v)

v

This gives the fraction of particles with speeds in the range v → v + dv.  Figure 8.1 shows a 
plot of this distribution function. This graph shows that relatively few particles will have speeds 
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that are either extremely high or extremely low (near zero).  Most of the particles will have 
intermediate speeds, with the most probable speed being found at the location of the peak in the 
distribution function.  This speed can be determined using calculus:

Eq. 8.8  d
dv

N(v)
N

= m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
e
−mv

2

2kT 4π 2v− mv
3

kT
⎛
⎝⎜

⎞
⎠⎟

⇒ 0

The solution is 2kT = mv2, which gives the most probable speed (or peak speed), v' as 
follows:

Eq. 8.9  ′v = 2kT
m

We might also inquire as to the average speed ( v ) of a particle in the gas.  This can be found 
by weighting each speed with its probability, adding them up, and dividing by the total:

Eq. 8.10 v =
v

0

∞

∫ N(v)dv

N
= m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
4π v3

0

∞

∫ e
−mv

2

2kT dv

The definite integral is easily found:  

� 

x3
0

∞∫ e−ax
2

dx = Γ(2)
2a2

= 1
2a2

, where a =m/2kT.  The 

integral is then 

� 

1
2
2kT
m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

= 2 kT
m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

, giving the following value for the average speed:

Eq. 8.11 v = m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
4π ⋅2 kT

m
⎛
⎝⎜

⎞
⎠⎟
2

= kT
m

8π
2π( )32

= 2
3
2

π
kT
m

= 8kT
π m

Note that this value is slightly greater than the most probable speed:  v = 2
π

′v ≈ 1.128 ′v .

Gas Pressure
Moving particles collide with each other, exchanging momentum and creating gas pressure.  

In Chapter 2, we noted that pressure can be expressed as a momentum flux:

Eq. 2.12 pressure =⊥ force
area

= 

d
dt

⊥ momentum

area
= momentum flux momentum

cm2 -s
⎡
⎣⎢

⎤
⎦⎥

To determine this flux, we consider a gas of number density N with a uniform distribution of 
particle velocities, defined as follows:  one third of the particles in each unit volume (1/3 N) move 
parallel to the x axis, with speed vx = v ; similarly, another third have only  y velocities, with vy = 
v , and the remainder have only z velocities, with vz = v .  

We now establish an area (A) that is perpendicular to the x axis and use it to construct a 
cylinder of length 2vΔt  and volume V = 2AvΔt , as shown in Figure 8.2.  The number of 
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particles in the cylinder is then NV = 2NAvΔt , with one third of these ( 13 NV = 2
3 NAvΔt ) having 

non-zero x velocities. 

Figure 8.2:  Volume for deriving gas pressure

A

L = 2v!t!

"– N1
6

"– N1
6

" – N1
6

" – N1
6

Of these x-moving particles, half of them ( 12 ( 13 NV ) = 1
6 NV = 1

3 NAvΔt ) will move in the +x 

direction and the other half will move in the –x direction.  Thus, within the cylinder, half of the x-
moving particles are moving toward area A while the other half are moving away from it.  The 
particles moving toward area A (from either side) will all pass through it in time Δt – a total of 
1
3 NAvΔt  particles.  The rate of particle flow through A is then 13 NAv  particles per second, and 

the rate per unit area (the particle flux) is 13 Nv .  The momentum carried by each particle is 

p = mv , and the momentum flux – which is equal to the pressure P – is then 13 Nvp = 1
3 Nmv

2 .

Now if the velocity distribution is Maxwellian, rather than the special uniform distribution 
utilized above, then we substitute v for v  and N(v) for N and integrate over all velocities.  The 
pressure will then be as follows:

Eq. 8.12 P = 1
3 N(v)pvdv

0

∞

∫ = 1
3m N(v)v2 dv

0

∞

∫

We now insert the Maxwellian distribution N(v) = 4π m
2πkT

⎛
⎝⎜

⎞
⎠⎟
3
2
Nv2e

−mv
2

2kT
⎛

⎝
⎜

⎞

⎠
⎟  and solve for 

the pressure:

Eq. 8.13 P = 1
3
m ⋅4π m

2πkT
⎛
⎝⎜

⎞
⎠⎟
3
2
N v4e

−mv
2

2kT
0

∞

∫ dv

The definite integral is 

� 

x4
0

∞∫ e−ax
2

dx = Γ(52)
2a

5
2

= 3 π
8a

5
2

, where a =m/2kT ; this yields the 

following simple result:

Eq. 8.14 P = 4π
3
m m

2πkT
⎛
⎝⎜

⎞
⎠⎟
3
2
N 3 π

8
2kT
m

⎛
⎝⎜

⎞
⎠⎟
5
2
= NkT = Pg

The gas pressure  is just the product of number density  and temperature – a statement of the 
ideal gas law.
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Mean Kinetic Energy
We may  also use the distribution function to determine the mean kinetic energy of a particle 

in the gas.

Eq. 8.15 KE = 1
2 mv

2 = 1
2 mv

2 = 1
2 m

N(v)v2 dv
0

∞

∫
N

But this is the same integral used in Equation 8.12 to determine the pressure; thus, we can 
substitute from that equation to obtain the following:

Eq. 8.16 1
2 mv

2 = 1
2
m
N
⋅
Pg
1
3m

= 3
2
Pg
N

= 3
2 kT

This is the average kinetic energy of a particle in the gas at  temperature T.  We can use this 
expression to define another speed:  vrms or the root mean square speed.

Eq. 8.17 vrms ≡ v2 = 3kT
m

Note that this speed is slightly greater than the two previously defined speeds:  vrms≈ 1.085 v  
≈ 1.225v'.  Also note while the particle speeds all relate to temperature, there are several different 
ways to define the temperature of a star.

Temperature
(1)  We could use spectra to determine the relative populations of atomic energy levels in the 

atmosphere and then apply the Boltzmann equation 

� 

Nn

Nm

= gn
gm

e−ΔEnm kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ to find T.  The 

temperature calculated in this manner would be an excitation temperature.
(2)  We could use spectra to determine the relative populations of different ionization stages 

and then apply  the Saha equation 

� 

Ni+1Ne

Ni

= 2Ui+1(T )
Ui(T )

2π mekT
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
e−χ i kT

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ to find T.  The 

temperature calculated in this manner would be an ionization temperature.
Alternatively, we could relate the star's radiation to the Planck function 

� 

Bν (T ) = 2hν
3

c2
1

ehν /kT −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ :

(3)  We could equate the intensity (or flux) of the star's radiation at some frequency (Iν) to 
that of a blackbody at the same frequency (Bν(T)) and solve for T ; this would give us a 
brightness temperature – often used in radio astronomy.

(4)  We could measure the intensities (or fluxes) of the star at two different  frequencies and 
find the ratio of these two; we could calculate the corresponding ratio for a blackbody, adjusting 
its temperature to match the ratio measured for the star; this would give us a color temperature.
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(5)  We could measure the stellar intensity (or flux), integrated over all frequencies (or 
wavelengths), and equate this result to the corresponding value for a blackbody at some 
temperature T :

Eq. 8.18 

� 

B(T ) = Bλ (T )0

∞∫ dλ = 2hc2 1
λ5

1
e
hc

λkT −10

∞∫ dλ

Letting 

� 

x = hc
λkT

 we have 

� 

dλ = − hc
kT

dx
x2

,  and the equation is transformed:

Eq. 8.19 

� 

B(T ) = 2hc2 k
4T 4

h4c4
⋅ x3

ex −10

∞∫ dx = 2k
4T 4

h3c2
⋅ π

4

15
= 2π

4k 4

15h3c2
T 4

The temperature identified in this manner is the effective temperature.
Two constants have been defined in connection with this result:  the Stefan-Boltzmann 

constant (σ)  and the radiation pressure constant (a)*.

Eq. 8.20 σ ≡ 2π
5k 4

15c2h3
≈ 5.67 ×10−5 erg

cm2-K4 -s
⎛
⎝⎜

⎞
⎠⎟

Eq. 8.21 a ≡ 8π
5k 4

15c3h3
≈ 7.56 ×10−15 erg

cm3-K4
⎛
⎝⎜

⎞
⎠⎟

Clearly σ = ac/4.  The integrated Planck function is then as follows:

Eq. 8.22 

� 

B(T ) = σ T 4

π

(6)  As a final temperature determination method, we could return to the gas and examine the 
particle velocity distribution to find the average kinetic energy of the gas particles 

1
2 mv

2 = 1
2 m

N(v)v2 dv
0

∞

∫
N

.  This would be equated to 3/2 kT ; the resulting temperature is the 

kinetic temperature.
As can be seen, we may define three different temperatures in terms of the state of the matter 

in the atmosphere, and another three different temperatures based on the radiation field in the 
atmosphere; ideally, in equilibrium, these values will all be the same.  In normal usage, when we 
talk about the 'temperature' of a star, we usually  mean the effective temperature; when we talk 
about the 'temperature' of a gas, we usually mean the kinetic temperature.

Model Atmospheres
Now that  we understand temperature, we are ready to investigate the structure of a stellar 

atmosphere.  How do the various gas properties change with position within the atmosphere?  
How does the flow of radiation through the atmosphere affect the gas properties at each level?  
These and other questions can be answered by constructing a model atmosphere – a numerical 
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tabulation of gas and radiation properties as a function of altitude, generated by a series of 
equations linking all the variables.  If we assume an atmosphere in radiative equilibrium – one 
with no energy sources or sinks – what equations can we apply to determine the atmospheric 
structure?

Hydrostatic Equilibrium

Figure 8.3:  Force diagram for an atmospheric mass element

dm

PA

(P + dP) A

dr rg

Consider a differential mass element dm, of vertical thickness dr and horizontal area A, as 
shown in Figure 8.3.  The vertical forces on this mass element are produced by gravity (g) and 
also pressure forces acting on the bottom (P) and the top  (P + dP) of the element.  If the 
atmosphere is in hydrostatic equilibrium, there will be no vertical acceleration, and we can 
formulate an equation by requiring that the upward forces balance the downward forces.

The vertical force balance requires that PA = (P +dP)A +gdm; the mass can be expressed in 
terms of the density  ρ as dm = ρAdr.  Combining these two gives P = (P + dP) + ρ g dr, which 
then yields the equation of hydrostatic equilibrium:

Eq. 8.23 

� 

dP
dr

= −ρ g

Note that for a thin atmosphere (r ≈ R), gravity is essentially constant, with g = GM/R2, while 
the density is a function of radius (ρ = ρ(r)).

Ideal Gas Law
In Equation 8.14 we generated the ideal gas law, which relates the gas pressure to the 

number density  of particles in the gas:  Pg = NkT.  However, because the equation of hydrostatic 
equilibrium relates gas pressure to mass density, we will need a connection between these two 
densities.  This can be provided by dimensional analysis:  to convert grams/cc into particles/cc 
we multiply the former by moles/gram and then by particles per mole (Avogadro's number):

Eq. 8.24 N #
cc

⎛
⎝⎜

⎞
⎠⎟ = ρ g

cc
⎛
⎝⎜

⎞
⎠⎟ ⋅
1
µ
mole
g

⎛
⎝⎜

⎞
⎠⎟
⋅NA

#
mole

⎛
⎝⎜

⎞
⎠⎟ ⇒ N = ρNA

µ

Alternatively, we could write this expression in terms of the amu relation:  H ≡ NA
–1 = 1.66 

×10–24 g/amu.
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Eq. 8.25 N #
cc

⎛
⎝⎜

⎞
⎠⎟ = ρ g

cc
⎛
⎝⎜

⎞
⎠⎟ ⋅
1
µ
atoms
amu

⎛
⎝⎜

⎞
⎠⎟ ⋅
1
H

amu
g

⎛
⎝⎜

⎞
⎠⎟

⇒ N = ρ
µH

Note that in place of H, some authors use mH = 1.67 ×10–24 g/hydrogen atom; this gives the 
approximate relation N ≈ ρ/µmH .

Using these relations we may now write the ideal gas law in several different ways:

Eq. 8.26 

� 

Pg = NkT Pg = ρkT
µH

Pg ≈
ρkT

µmH

Pg = ρNAkT
µ

Pg = ρℜT
µ

In the last of these we use the gas constant ℜ ≡ NAk .  In this book we will normally  utilize 
either the first or last of these forms.

Mean Molecular Weight
In most of these expressions of the ideal gas law we find the mean molecular weight µ, with 

units of either grams per mole or, equivalently, amu's per particle.  The name is misleading as µ 
is actually an average particle mass.  It is found by  dividing the total mass of all particles (in 
amu) by the total number of particles – a relatively simple concept.  But the number of particles 
will depend on the degree of ionization, which must  be known in order to determine the value of 
µ.

Consider an atom of helium, which has a mass (m) of 4.0026 amu.  A gas of pure neutral 
helium (He I) would have one particle per atom and a mean molecular weight of 4.0026 amu per 
particle.  A gas of singly  ionized helium (He II) would produce two particles per atom – one 
electron and one ion – and thus have a mean molecular weight of 4.0026 ÷ 2 = 2.0013 amu per 
particle.  Similarly, a gas of doubly ionized helium (He III) would have a mean molecular weight 
of 1.3342.

The concept can easily be expanded to include gases that are mixtures of different elements.  
In general, if Ni is the number density of species i (including free electrons) and mi is the mass of 
species i (in amu), then the mean molecular weight is calculated as follows:

Eq. 8.27 

� 

µ =
Nimi∑
Ni∑

=
Nimi∑
NT

  where NT is the total number density (of all particles)

The degree of ionization is usually  high in stellar interiors but may  be either high or low in 
stellar atmospheres, depending on temperature and pressure.  If all atomic species are assumed to 
be neutral, with no free electrons, then the sum is simply performed over the atomic numbers Z.

Eq. 8.28 

� 

µ =
NZ mZ

Z
∑

NT

= m  where m  is the mean atomic mass (in amu)

Naturally µ is composition dependent.  In modeling, one normally assumes an appropriate 
composition for the stellar type in question.  Composition is often given in terms of mass 
fractions:  X, Y, and Z.
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Mass Fractions
X is the mass fraction of hydrogen – the mass of hydrogen divided by  the total mass of the 

star.  Y is the mass fraction of helium, and Z (not to be confused with the atomic number Z) is the 
mass fraction of metals:  all the elements other than hydrogen and helium.  As these three 
quantities should add up to 1, only two of them need be specified.  Explicit  calculation of each 
would be done as follows:

Eq. 8.29 X =
NHmH

Nzmz
z
∑

=
NHmH

NTµ
=
NHmH

ρNA

Eq. 8.30 Y =
NHemHe

Nzmz
z
∑

=
NHemHe

NTµ
=
NHemHe

ρNA

Eq. 8.31 Z =
NMmM

M
∑

Nzmz
z
∑

=
NMmM

M
∑
NTµ

=
NMmM

M
∑

ρNA

Here the subscript M indicates metals, and the sum is over the metals.  Also, NH indicates the 
number density of hydrogen nuclei, no matter what their ionization state; similarly for NHe and 
NM .  All masses mi are in amu's.

A fair uncertainty  exists for the abundance of helium in stellar atmospheres; this is because 
helium lines do not appear in the spectra of cooler stars.  The range of estimates for the number 
ratio NHe/NH  is approximately 0.03 to 0.14.  This yields the following ranges for the values of the 
mass fractions:

X ≈ 0.86 → 0.63 Y ≈ 0.13 → 0.35 Z ≈ 0.018 → 0.013

Not all stars have the same composition; some are metal poor while others are metal rich.  It 
is a good idea to always note the composition used to generate a particular model or graph.  One 
should also note that sometimes compositions are given as number fractions rather than mass 
fractions.

Total Pressure
We have seen how pressure is produced by both particles and photons.  Gas pressure was 

given by Equation 8.26 as Pg = ρℜT/µ; radiation pressure was given in Equation 2.18 as Pν = 
(4π/3c) Iν for isotropic radiation.  Integrating the latter over frequency (we do not care about the 
spectral distribution of pressure) yields P = (4π/3c) I.  Now if the radiation field is that of a 

blackbody, then I = B(T) = σT 
4/π, and the radiation pressure Pr is as follows:

Eq. 8.32 

� 

Pr = 4π
3c

σ T 4

π
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =
4σ T 4

3c
= 1

3 aT
4
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The total pressure can then be written as the sum of the gas pressure and the radiation 
pressure:

Eq. 8.33 

� 

P = Pg +Pr = ρℜT
µ

+ 1
3 aT

4

In general, the total pressure should be used in making a model atmosphere, although there 
are some occasions when the contribution from the gas or the radiation may be negligible.  We 
may get some idea of where this might occur by inquiring when the gas and radiation pressures 
will be equal to each other.  For this we set Pg = Pr :

Eq. 8.34 

� 

ρℜT
µ

= 1
3 aT

4 ⇒ T 3 = 3ℜρ
aµ

= 3ℜN
aNA

= 3kN
a

  (using Equation 8.24:  ρNA=Nµ)

Eq. 8.35 

� 

T = 3kN
a

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1
3
≈ 0.3797N

1
3

So the equivalency depends on the density and the temperature:  for N = 1015, the two 
pressures are equal at T = 37,970 K; for N = 1012, the two pressures are equal at T = 3797 K.  
Thus, radiation pressure will be important at relatively high temperatures and/or low densities.

Equilibrium Calculations
In order to calculate a model atmosphere, we need to be able to determine the pressure at any 

given point; this value will depend on the various gas properties such as temperature, density, 
composition, etc.  In particular, we will need to know the degree of ionization of each element, as 
this affects the values of N and µ.  In Chapter 4 we learned how to use the Saha equation to 
calculate ionization, and we learned the basic principles to use if there are multiple elements or 
multiple ionization stages.  For our model atmosphere, we will likely  use all of these options in 
order to make the model as realistic as possible.  How do we proceed in order to determine the 
state of a gas in equilibrium?

In theory, we should be able to determine the equilibrium state by knowing the composition 
(X, Y, Z) and any  two gas properties (T, P, N, ρ, etc.).  For this method, we will choose the 
temperature and the electron pressure as our independent variables – for reasons that will soon 
become clear.

Our chosen composition will consist of  hydrogen (H), helium (He), and a number of metals 
(Mj).  From these we will identify the species to be included in the model:

• Hydrogen:  H, H +, H –    (and in cool stars, we would add H2 and H2
+)

• Helium:  He, He+, He++ 
• Metals:  Mj , Mj

+, Mj
++ 

• Electrons:  e– 
We will assume that all the ionization reactions are in equilibrium, with equilibrium 

constants (K) defined as follows:
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Reaction Equilibrium Constant Ionization Potential

 H ⇌ H + +e– 

� 

KH ≡
NH +Pe
NH

 χH = 13.598 eV

H – ⇌ H +e– 

� 

KH − ≡
NHPe
NH −

 χH– = 0.754 eV

He ⇌ He + +e– 

� 

KHe ≡
NHe+Pe
NHe

 χHe = 24.587 eV

He + ⇌ He ++ +e– 

� 

KHe+ ≡
NHe++Pe
NHe+

 χHe+ = 54.416 eV

Mj ⇌ Mj
+ +e– 

� 

KM j
≡
N

M j
+Pe

NM j

Mj
+ ⇌ Mj

++ +e– 

� 

K
M j

+ ≡
N

M j
++Pe

N
M j

+

It will be immediately  recognized that the equilibrium constants can be calculated using Saha 
equations:

Eq. 8.36 

� 

Ki = Ni+1Pe
Ni

= 2Ui+1(T )
Ui (T )

2π me

h2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
kT( )52 e−χ i kT

Note that these are pressure equilibrium constants (KP) as they have units of pressure.

Given our independent variables (T and Pe ) and the atomic properties for each element, we 
may calculate all of the equilibrium constants.  The unknowns are the various partial pressures:   
PH , PH+ , PH– , PHe , PHe+ , PHe++ , PMj , PMj+ , PMj++ .

We then express all the partial pressures in terms of the partial pressures of the neutral 
species: 

Eq. 8.37 

� 

PH + = PH
KH

Pe
  Eq. 8.38 

� 

PH − = PH
Pe
KH −

Eq. 8.39 

� 

PHe+ = PHe
KHe

Pe
  Eq. 8.40 

� 

PHe++ = PHe+

KHe+

Pe
= PHe

KHeKHe+

Pe
2

Eq. 8.41 

� 

PM j
+ = PM j

KM j

Pe
 Eq. 8.42 

� 

PM j
++ = PM j

+

KM j
+

Pe
= PM j

KM j
KM j

+

Pe
2

We can now use composition information to link the elemental number abundances Ai ; we 
will need AH , AHe , and AMj .  (These are given in Allen (1973) and Cox (2000) as log AH = 12.00, 
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log AHe = 10.99, etc.)  We can then write the total number density of helium nuclei and metal 
nuclei in terms of the total number density of hydrogen nuclei and their relative abundances:

Eq. 8.43 

� 

NHe tot = AHe

AH

NH tot = fHeNH tot   where 

� 

fHe ≡
AHe

AH

Eq. 8.44 

� 

NM j tot
=
AM j

AH

NH tot = f jNH tot   where 

� 

f j ≡
AM j

AH

The total number densities of the elements are simply sums of the number densities of the 
relative species (at least as long as molecules are not considered):

Eq. 8.45 

NH tot = NH + N
H + + NH − = PH + P

H + + PH −( ) / kT

         = 1+ KH

Pe
+

Pe
K

H −

⎛

⎝
⎜

⎞

⎠
⎟
PH
kT

≡WH
PH
kT

Eq. 8.46 

NHe tot = NHe + NHe+
+ N

He++
= PHe + PHe+ + PHe++( ) / kT

         = 1+ KHe

Pe
1+

K
He+

Pe

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
PHe
kT

≡WHe
PHe
kT

Eq. 8.47 

NM j tot
= NM j

+ N
M j

+ + NM j
++ = PM j

+ P
M j

+ + PM j
++( ) / kT

          = 1+
KM j

Pe
1+

K
M j

+

Pe

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
PM j

kT
≡Wj

PM j

kT

Now all species' partial pressures can be expressed in terms of Ki (T), Pe , PH , and fi :

Eq. 8.48 

� 

PHe = fHePH
WH

WHe

Eq. 8.49 

� 

PM j
= f jPH

WH

Wj

We now introduce the equation of charge conservation, which asserts that  the number of 
negative charges should equal the number of positive charges:   

Eq. 8.50 Pe + PH– = PH+ + PHe+ + 2PHe++ + PM+ + 2PM++

The metal pressures are sums over all the metals in the model:

Eq. 8.51 

� 

PM + = PM j
+

j
∑ = PM j

j
∑

KM j

Pe
= PH

WH

Pe

f jKM j

Wjj
∑
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Eq. 8.52 

� 

PM ++ = PM j
++

j
∑ = PM j

j
∑

KM j
KM j

+

Pe
2 = PH

WH

Pe
2

f jKM j
KM j

+

Wjj
∑     and

Eq. 8.53 

� 

PM + + 2PM ++ = PH
WH

Pe

f jKM j

Wjj
∑ 1+ 2

KM j
+

Pe

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

A similar expression can be written for the helium pressures:

Eq. 8.54 

� 

PHe+ + 2PHe++ = PH
WH

Pe
fHeKHe

WHe

1+ 2
KHe+

Pe

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

All of these can be substituted into the charge conservation equation:

Eq. 8.55 Pe = PH
KH

Pe
− Pe
K

H −

+ WH

WHe

fHeKHe

Pe
1+ 2

K
He+

Pe

⎛
⎝⎜

⎞
⎠⎟
+WH

Pe

f jKM j

Wjj
∑ 1+ 2

K
M j

+

Pe

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

This is a linear equation in PH that can easily  be solved.  (If diatomic hydrogen molecules are 
included in the model, this equation becomes quadratic.)  From this solution, all the other partial 
pressures can be calculated, and from these, the total gas pressure can be determined:

Eq. 8.56 Pg = Pi
i
∑

The mean molecular weight can be found from a weighted average of the particle masses.  
(Electrons need not be explicitly listed in the numerator as their masses are already  included in 
the atomic masses; electrons are included in the denominator.)

Eq. 8.57 µ =
Nimi∑
Ni∑ =

Pimi∑
Pg

= PHWH

Pg
mH + mHe fHe + mM j

f j
j
∑

⎛

⎝⎜
⎞

⎠⎟

And finally the density can be calculated:

Eq. 8.58 

� 

ρ =
µPg
ℜT

Thus, given the composition, the temperature, and the electron pressure, the concentrations 
(or partial pressures) of all species and the bulk gas properties can be determined – assuming 
local thermodynamic equilibrium.  This is the type of information needed to determine opacities.

As noted above, we can use the composition and any  two gas properties to find the 
equilibrium configuration.  We chose temperature and electron pressure because they  input 
directly  into the Saha equations, allowing us to determine equilibrium constants.  But this is 
somewhat inconvenient, as the electron pressure depends on temperature, and in itself does not 
tell us much about the state of the gas.  

It would seem far more reasonable to choose the temperature and density of the gas as 
independent variables; both of these affect the rate at which particles collide with each other, and 
collisions are the primary  mechanisms by which the gas attains equilibrium.  But density does 
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not enter directly into the Saha equation; in fact, it  was the last property calculated in our 
procedure above.  How can we modify our process to make it work with density?

We have species concentrations (xi) as functions of temperature and electron pressure (xi =    
f (T, Pe)), but would prefer to know them as functions of temperature and density (xi = f (T, ρ)).  
We can get ρ(T, Pe), and we want xi(To , ρo) – the equilibrium configurations at  some particular 
temperature To and density ρo .  All we have to do is solve the following equation for Pe :

Eq. 8.59 ρ(To , Pe) = ρo

As we cannot isolate Pe , we must instead guess its value, calculate ρ, compare this with ρo , 
and use this result to guess a new value of Pe .  It is hoped that  our sequence of guesses will 
ultimately  converge on the correct  value of Pe , allowing us to determine the other equilibrium 
values.  One procedure to employ in this problem is the secant method.

The Secant Method
In applying the secant  method to this problem, we first write logarithmic forms of our 

variables.  (These particular variables may range over several orders of magnitude, and log forms 
provide a more efficient means of covering the necessary range.)  Let x = log Pe , yo = log ρo , and  
f(x) = log[ρ(To ,Pe)].  Then solve  f(x) – yo = 0 for x by iteration using the secant method, where 
successive approximations are given by the following:

Eq. 8.60 

� 

xn+1 = xn + xn − xn−1( ) yo − f (xn )
f (xn )− f (xn−1)

Figure 8.4 demonstrates the basic procedures of the secant method.  We seek the x value at 
which the curve f(x) crosses the yo line.  We choose the first  two x values, and the rest are 
generated by Equation 8.60.  

Figure 8.4:  Illustration of the secant method
y

f(x)

x

yo

•
•
•

•

•

x1 x2x3 x4 x5
A

B

C
D

• Secant A passes through [x1, f(x1)] and [x2, f(x2)]. 

• Secant B passes through [x2 , f(x2)] and [x3 , f(x3)]. 
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• Secant C passes through [x3 , f(x3)] and [x4 , f(x4)]. 

• Secant D, passes through [x4 , f(x4)] and [x5 , f(x5)]. 

Secant D appears to pass very  close to the intersection of  f(x) and yo .  That is, because f(x6) ≈ 
yo ; the next value (x6) will be very close to the solution we seek.

Altitude Variations
We have seen how the gas properties can be determined as functions of density and 

temperature; but these quantities will vary with position in the atmosphere.  We now need to 
determine how temperature and density (and all the other gas properties) vary with altitude in the 
photosphere.

We may begin by assuming hydrostatic equilibrium in the atmosphere, as derived above:

Eq. 8.23 

� 

dP
dr

= −ρ g

If we neglect radiation pressure for the moment, we have pressure as a function of density 
and temperature:

Eq. 8.61 

� 

P ≈ Pg = ρℜT
µ

  where µ= µ(ρ,T)

If we could derive ρ(r) and T(r), we could solve the problem.
Toward the end of Chapter 2 we used radiative transfer to obtain a relation between 

temperature and optical depth, assuming the gray case, the Eddington approximation, and 
radiative equilibrium:

Eq. 8.62 T(τ) = Te(1/2  + 3/4 τ)1/4

As τ  is related to r, this equation might prove useful.  However, because optical depth is also 
frequency dependent, we must be careful, as we do not want temperature to be frequency 
dependent as well.  Instead, we will use a mean optical depth 

� 

τ , rather than τν .
From our definition of τν (dτν ≡ – κν ρ dr) we will define a mean optical depth 

� 

τ :

Eq. 8.63 

� 

dτ ≡ −κ ρ dr

Here 

� 

κ  is a mean absorption coefficient (to be defined later).  
We may then combine this equation with hydrostatic equilibrium to eliminate r and ρ:

Eq. 8.64 

� 

dP
dτ 

= g
κ 

Thus, given the model parameters Te and g (=GM/R2), and using a T (

� 

τ ) relationship such as 
Equation 8.62, we can arrive at P(

� 

τ ), assuming that 

� 

κ  can be found.
And if P ≈ Pg , then P ≈ ρℜT/µ and ρ ≈ Pµ / ℜT.  Hydrostatic equilibrium then can be written 

in terms of temperature:
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Eq. 8.65 

� 

− dP
dr

= ρg = µg
ℜ
P
T

⇒ − d lnP
dr

= µg
ℜ
1
T

This allows calculation of the altitude coordinate:

Eq. 8.66 

� 

dr = −ℜT
µg

d lnP

Thus, the goal – obtaining T(r) and P(r) – is not really attained; rather, we determine r(T,P), 
which provides us with the same information in the end.

Effective Gravity
Note that in the above proceedings, we assumed that radiation pressure was negligible, but 

this will not be valid for every stellar atmosphere.  For higher temperature models, we may 
include radiation pressure by the following method.  Begin with the expression for total pressure:

Eq. 8.67 P  = Pg +Pr

Differentiate both sides with respect to 

� 

τ  to obtain an equation similar to Equation 8.64:

Eq. 8.68 

� 

dP
dτ 

=
dPg
dτ 

+ dPr
dτ 

= g
κ 

⇒
dPg
dτ 

= g
κ 
− dPr
dτ 

From Chapter 2 we have the following for the gray case and radiative equilibrium:

Eq. 2.124 

� 

dK
dτ 

= F0
4π

Eq. 8.69 

� 

Pr = 4π
c
K ⇒ dK = c

4π
dPr

These combine to form the following:

Eq. 8.70 

� 

dPr
dτ 

= F0
c

= σ Te
4

c

Inserting this result into Equation 8.68 produces an expression not unlike Equation 8.64:

Eq. 8.71 

� 

dPg
dτ 

= g
κ 
− σ Te

4

c

We then define an effective gravity:

Eq. 8.72 

� 

geff ≡ g −
κ σ Te

4

c

This transforms Equation 8.71 and allows us to proceed as before:

Eq. 8.73 

� 

dPg
dτ 

=
geff
κ 
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Note that construction of model atmospheres involves simultaneous solution of radiative 
equations and gas equations.  In practice, the two sets are solved alternately  until they  converge 
on a particular solution.

Scale Height
Suppose that a portion of the atmosphere is essentially isothermal, meaning that T (and µ) are 

constant (in addition to g).  Then the altitude equation can easily be integrated:

Eq. 8.74 
d lnP
dr

= −
µg
ℜT

= constant   ⇒ P = Poe
−
µg
ℜT

r
= Poe

−
r
H

Here H ≡ ℜT/µg is the (pressure) scale height; this is the distance over which the pressure 
changes by a factor of e.  (Density scale heights are used as well.)  Although the scale height 
concept is defined for an essentially constant temperature, it is sometimes used even if this 
condition is not met.

The scale height can be thought of as the ratio of two competing quantities – the ratio of 
thermal energy  (ℜT) to gravitational force (µg).  The former is trying to hold the atmosphere up 
while the latter is trying to pull it down.  For relatively  low values of g (as found in atmospheres 
of giants and supergiants), the scale height will be large and the atmosphere will be extended.  
For the higher g values found in main sequence dwarfs, the scale height will be small and the 
atmosphere will be compacted.

Non-equilibrium atmospheres
The above discussion is applicable to atmospheres in hydrostatic equilibrium, which can be 

found in most normal stars; for such stars the atmospheric structure is essentially constant over 
time.  But this is not the case for certain types of variable stars.  As an example, we will consider 
the case of the long-period variable stars (LPVs).  The atmospheres of these stars are periodically 
traversed by shock waves that impart upward momentum to the gas particles, rendering 
hydrostatic equilibrium inapplicable.  We begin by considering the basics of shock waves.

Shock Waves
In a gas, information is transmitted by particle collisions at the speed of sound (cs), which 

depends on the local gas properties.

Eq. 8.75 

� 

cs
2 = ∂P

∂ρ S

  (at constant entropy)

If a disturbance moves through the gas at speed v < cs , information about the disturbance is 
transmitted ahead of it, preparing the gas in advance.  If the disturbance is a compression wave, 
the gas ahead becomes slightly compressed before the wave arrives, making changes to the gas 
properties fairly gradual.  Figure 8.5 shows a plot of density vs. position for the leading edge of a 
subsonic compression wave.
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Figure 8.5:  Density variation across the leading edge of a subsonic wave
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!

However, if the disturbance moves at v > cs , then no advance warning is given and the 
compression comes as a complete surprise to the gas.  In this case, the compression is essentially 
instantaneous and a shock wave results, as depicted by the vertical segment in Figure 8.6.

Figure 8.6:  Density variation across the leading edge of a supersonic wave

r

 

!

Description of a stellar shock wave involves velocities and densities in the atmosphere.  
Generally two reference frames are employed:  the star, and the shock.  Figure 8.7 identifies the 
relevant densities ahead of and behind the shock, and the velocities as measured in each 
reference frame.

Figure 8.7:  Shock velocities, as defined in the reference frames of the star and the shock
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Star Shock

 

u1

 

u0vO

vS

vF

ρ0 = pre-shock density

ρ1 = post-shock density

vS = shock velocity, relative to star (vS  > 0)
vO = outward velocity of post-shock material, relative to star (vO > 0)
vF = infall velocity of pre-shock material, relative to star (vF < 0)
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u1 = post-shock velocity, relative to shock (u1 = vO – vS ) (u1 < 0)
u0 = pre-shock velocity, relative to shock (u0 = vF – vS ) (u0 < 0)

The shock reference frame is moving at vS with respect to the star.  Thus, the gas velocities 
are related by a simple transformation.  Also of interest is the velocity discontinuity across the 
shock:

Eq. 8.76 Δv = vO – vF = u1 – u0    (Note that three of these velocities are negative.)

We may employ  conservation of mass across the shock; the mass flow rate into the shock is 
equal to the mass flow rate out of it:

Eq. 8.77 ρ1 u1 = ρ0 u0

The compression ratio (or shock strength) S is the ratio of the densities:

Eq. 8.78 

� 

S = ρ1
ρ0

= u0
u1

As the shock progresses through the atmosphere, it has several effects on the gas:
• It imparts an outward velocity (vO) to previously in-falling material.

• It adds internal energy  to the gas, obtained from the bulk kinetic energy difference:  the 
increase in enthalpy per gram is ΔH = (u0

2 – u1
2)/2  (where H = U + PV and ΔH = ΔU 

+ Δ(PV)).
• It compresses the gas, increasing the density (and also the pressure and temperature).
The influx of energy from the passing shock disrupts the ionization equilibrium of the gas.  

The kinetic temperature and density both increase significantly  across the shock, and this causes 
atomic collisions to be more frequent and more violent, blasting atoms and molecules apart.  
Radiation from the gas behind the shock and the work done in expanding this gas both serve to 
cool the atmosphere and drive it back towards equilibrium at  a more normal lower temperature.  
The time scale of this relaxation process depends on the local temperature and density, both of 
which are continually changing.  

Meanwhile, each layer in the atmosphere rises and falls in response to the passing shock, as 
shown in Figure 8.8.  Here the diagonal features mark the location of the shock, which moves 
outward at  a constant velocity, while the solid curve at the bottom marks the location of the 
photosphere.  (One stellar radius = 262.3 R☉; period = 332 days; phase = 0 at maximum light.)

These variations make the atmosphere quite different from a normal static atmosphere; in 
particular, the scale height in such a dynamic atmosphere is much greater, as the gas is 
periodically levitated by the shocks.  Clearly, LPVs cannot be accurately  modeled by static 
atmospheres but will require considerable modifications.
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Figure 8.8:  Trajectories of individual layers in an LPV atmosphere, shown over three periods
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Dynamic Scale Height
To get the pre-shock density distribution for an LPV atmosphere we must somehow estimate 

the scale height, a concept  introduced earlier in this chapter.  We first define the static scale 
height:

Eq. 8.79 HS =
ℜT
µg

= kT
mg

= thermal energy
gravitational force

To modify this to obtain a dynamic scale height, we add the bulk kinetic energy of the gas to 
the thermal energy:

Eq. 8.80 HD =
kT + 1

2 m v2

mg

We can approximate 〈v2〉 by vO
2 and should recall that g = g(r) = GM/r2 must be used for 

extended atmospheres.  This gives the following expression for the dynamic scale height – a 
quantity that will always be greater than the static scale height.

Eq. 8.81 HD = kT + 1
2 mvO

2

GMm r2

Pierce:  Notes on Stellar Astrophysics Chapter 8:  Stellar Atmospheres

161



The resulting pulsating atmosphere is considerably more chaotic and less well-behaved than 
a normal static one – and thus is more difficult to model.  This is in part because the usual 
assumption of thermodynamic equilibrium is often not appropriate in such atmospheres.

In the next chapter we will turn our attention to the stellar interior, examining the basic 
physical laws that  apply there and determining what assumptions can be made that will allow us 
to form reasonable models of this fundamental region of a star.
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CHAPTER 9:  Stellar Interior Models
As noted in Chapter 1, astrophysicists have found it  convenient to divide a star into two 

regions:  the atmosphere and the interior.  This is because there are significant differences in 
many of the equations that govern the matter and radiation in these regions.  Table 9.1 lists the 
major differences between these two regions.

Table 9.1:  Atmosphere vs. interior

atmosphere – outside interior – inside

optically thin optically thick

g is constant g varies ≈ 1/r2 

atoms may be neutral and/or ionized atoms are usually ionized

relatively low temperature, pressure, density relatively high temperature, pressure, density

no energy sources or sinks energy generation

low fraction of star's mass high fraction of star's mass

visible to us invisible to us

The last point is an important difference in our effort to understand the structure of the star.  
Unlike the stellar atmosphere, the interior is hidden from our direct view; we do not receive 
visible photons directly  from the stellar interior, making it  difficult to gather observational data 
about this region.  Instead we will have to examine the applicable equations of physics that relate 
the various stellar properties.  If we are lucky, we may  find an appropriate function that describes 
the variation of these properties inside the star; alternatively, we may use these equations to 
construct a numerical model of the stellar interior.

Before we begin, we will make a few simplifying assumptions about the star we choose to 
study.  Real stars are extremely  complex, and we do not expect to be able to model or predict 
each of their characteristics.  Our task will be difficult enough, even with the following 
simplifications:
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Assumptions
• No rotation.
• No magnetic field.
• Spherical symmetry (no θ or ϕ dependence – just r).
• Equilibrium (only very slow changes with time will be allowed).
The first two assumptions are obviously not true in all cases, but we would rather not  deal 

with the complexities they would introduce – at least not right now.  They can always be added 
after a basic model is established.

We will now proceed with the basic physical equations that govern the structure of a star.

Continuity of Mass
The most fundamental parameter of a star is its mass, as it determines not only the structure 

of the star but also the course of its evolution.  The mass of a star is constant throughout most of 
its lifetime, but at this point we are interested in the manner in which the mass is distributed 
within the star.  The mass variable we need is the mass interior to a given radius, denoted Mr ; as 
we move outward from the center of the star, this quantity increases as more and more of the star 
becomes interior to the specified radius.  Upon reaching the surface, r becomes R and Mr 
becomes M – the total mass of the star.  

We need Mr because it is this quantity that determines the gravity at a particular radius:  

Eq. 9.1  

� 

g(r) = GMr

r2

(A spherical shell of matter exerts no net gravitational force on interior mass points.)
Between the center and the surface, the change of Mr with radius is found as follows.  

Consider a point inside a star at a distance r from the center.  The mass contained within this 
sphere will be Mr .  If we now increase the radius by  a small amount (dr), we add a spherical 
shell of thickness dr and surface area 4πr2 to the sphere of matter interior to the point at r.  The 
mass of this shell (dMr) will be the volume of the shell (4πr2dr) multiplied by the density of 
matter in the shell (ρ(r)).  This gives us the equation of mass continuity – the first of our 
equations of stellar structure.

Eq. 9.2  dMr = 4π ρ r2dr     ⇒     dMr

dr
= 4πρ r2

Hydrostatic Equilibrium
In the previous chapter we introduced the equation of hydrostatic equilibrium for stellar 

atmospheres, noting at the time that the value of g was presumed to be constant throughout the 
atmosphere.

Eq. 8.23 

� 

dP
dr

= −ρ g
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While this assumption is usually good in an atmosphere, it is never applicable in the interior 
because interior points farther from the center will have higher values of Mr and thus higher 
gravity.  Therefore we must modify Equation 8.23 by  inserting Equation 9.1 into it, to obtain the 
more general equation of hydrostatic equilibrium for the interior:

Eq. 9.3  

� 

dP
dr

= −GMrρ(r)
r2

Equation of State
Neither of our first two equations involves temperature – another key variable in the stellar 

interior.  We can introduce temperature by utilizing the ideal gas law as our equation of state 
(an equation that shows the functional dependence of the pressure on the other gas properties).  
This equation for the gas pressure was given in the previous chapter.

Eq. 9.4  

� 

Pg = ρℜT
µ

This equation also introduces the mean molecular weight µ, which was difficult to 
determine for the atmosphere because it involved temperature- and pressure-dependent Saha 
equations.  In the interior however, we may presume that ionization is complete, and this permits 
considerable simplification.

As before, the mean molecular weight is the ratio of particle mass to particle number.  An 
atom of element z has an atomic mass mz ; when completely ionized it will produce one nucleus 
and z electrons for a total of 1 + z particles.  The mean molecular weight for this element is then 
mz/(1 + z) and for the entire gas with elemental number densities Nz we have the following:

Eq. 9.5  

� 

µ =
Nzmz∑

Nz 1+ z( )∑
This expression can be further simplified:

Eq. 9.6  

1
µ
= total# particles

totalparticlemass(amu)
= total# moles

totalparticlemass(gram)
=

molesof z∑
gram

   = moles z
gram z∑ ⋅ gram z

gram
= moles z

gram z∑ ⋅ Xz =
#particles z

mass z (amu)∑ ⋅ Xz =
1+ z
mzz

∑ ⋅ Xz

Now for most heavy elements, mz ≈ 2z ≈ 2(z + 1); this means that (1 + z)/mz ≈ 1/2 for z > 2.  
We will now employ our XYZ notation for mass fractions and write X = X1 , Y = X2 , and 

� 

Z ≡ Xz
z>2
∑ .  Inserting these expressions into the previous equation we find the following:

Eq. 9.7  

� 

1
µ

= 1+ z
mz

∑ Xz = 2
mH

X + 3
mHe

Y + 1
2
Z
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We now note that mH =1.008 ≈ 1 amu, and mHe = 4.003 ≈ 4 amu, which produces our final 
approximation of the mean molecular weight in the case of complete ionization:

Eq. 9.8  

� 

1
µ

= 2X + 3
4
Y + 1

2
Z

The range of values for µ is fairly small.  A gas of pure hydrogen (X =1) would have µ = 1/2 ; 
pure helium (Y =1) would have µ = 4/3 ; and for pure metals (Z =1), µ = 2.

A related quantity  that will eventually be needed is the mean molecular weight per (free) 
electron (µe):

Eq. 9.9  µe =
#amu

freeelectron
⋅ NA

NA

= grams
moleelectrons

= g
cc

⋅ cc
electron

⋅ electrons
moleelectrons

= ρNA

Ne

We can obtain an expression for the number density of electrons in the case of complete 
ionization:

Eq. 9.10 
Ne =

elec
cc

= elec
gram z∑ ⋅ gram z

gram
⋅ gram

cc
= elec

atom z∑ ⋅ atom z
gram z

⋅ gram z
gram

⋅ gram
cc

     = z atom z
mole z∑ ⋅ mole z

gram z
Xzρ = zNA∑ 1

mz

Xzρ = ρNA
zXz

mz
∑

We now insert this into the expression for µe :

Eq. 9.11 

� 

µe = ρNA

Ne

= 1
zXz

mz
∑

  or  

� 

1
µe

= zXz

mz
∑

This equation applies to the case of complete ionization, for which z/mz ≈ 1/2 for z > 2.  Then 
we write the sum explicitly:

Eq. 9.12 

� 

1
µe

= zXz

mz
∑ = 1⋅ X

1
+ 2 ⋅Y
4

+ 1
2

Xz∑

We now substitute Z = ∑ Xz and note that Z = 1 – X – Y ; this gives our final expression for 
the mean molecular weight per free electron:

Eq. 9.13 

� 

1
µe

= X + 1
2Y + 1

2 1− X −Y( ) = 1
2 X + 1

2 ⇒ µe = 2
1+ X

Note that we have used either mz = 2z  or mz = 2z + 2, as needed.

The range of values for µe is even smaller than it was for µ:  when X = 1, µe = 1, and when Y 
= 1 or Z = 1, µe = 2.  We now recall Equation 9.11 to write an expression for Ne – again good only 
for complete ionization:
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Eq. 9.14 

� 

Ne = ρNA

µe

= 1
2 ρNA 1+ X( )

Just as we can use µ in the ideal gas law to calculate the total gas pressure, we can use µe in 
the same law to calculate the electron pressure:

Eq. 9.15 

� 

Pe = ρℜT
µe

The Linear Model
At this point we have two differential equations that  can be integrated to give the pressure in 

a star as a function of radius:

Eq. 9.16 

� 

Mr = 4πρ(r)
0

r∫ r2dr

Eq. 9.17 

� 

P(r) = − GMrρ(r)
r20

r∫ dr

Combining these with the ideal gas law allows us to determine T(r) as well.  All we need is 
an equation that gives the density  as a function of radius – preferably  a function that permits us 
to solve both integrals.  We have not yet considered the form of such a function, but we might 
expect that it  would be a decreasing function on r (from r = 0 to r = R).  For starters, let  us 
investigate a very simple function with this property:

Eq. 9.18  

� 

ρ = ρc 1− r R( )  where ρc is the central value of the density

Figure 9.1 shows this distribution.  For obvious reasons, the solution we obtain based on this 
density function will be known as the Linear Model.

Figure 9.1:  Density distribution for the Linear Model

r 

!
 

!c

R

We begin by inserting this density function into the mass continuity expression:

Eq. 9.19 

� 

dMr = 4πr2ρc 1− r R( )dr = 4πρc r
2 − r

3

R( )
The first integral is straightforward:
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Eq. 9.20 Mr = dMr∫ = 4πρc r
2 − r

3

R( )0

r

∫ dr = 4πρc
r3

3
− r4

4R
⎛
⎝⎜

⎞
⎠⎟

This gives the mass interior to radius r.  The total mass of the star is found by evaluating this 
expression at r = R:

Eq. 9.21 M = 4πρc
R3

3
− R4

4R
⎛
⎝⎜

⎞
⎠⎟
= πρcR

3

3

From this we can determine the value of the central density:

Eq. 9.22 

� 

ρc = 3M
πR3

= 4ρ  where the mean density is given by ρ  = 3M / 4πR3

Next we can use the result of the first integration to solve the pressure integral:

Eq. 9.23 
dP = −GMrρ(r)

r2 dr = −
G ⋅4πρc

r3

3
− r4

4R
⎛
⎝⎜

⎞
⎠⎟
⋅ ρc 1− r R( )

r2 dr

     = −4πρc
2Gr 1

3
− r

4R
⎛
⎝⎜

⎞
⎠⎟ 1− r

R
⎛
⎝⎜

⎞
⎠⎟ dr = −πρc

2G 4r
3
− 7r2

3R
+ r3

R2

⎡

⎣
⎢

⎤

⎦
⎥dr

The pressure at radius r can then be found by integrating from the center outward:

Eq. 9.24 dP
Pc

P

∫ = −πρc
2G 4r

3
− 7r

2

3R
+ r3

R2
⎡

⎣
⎢

⎤

⎦
⎥0

r

∫ dr

The result is the change in pressure from the center to the radius in question:

Eq. 9.25 P − Pc = −πρc
2G 2r2

3
− 7r

3

9R
+ r4

4R2
⎡

⎣
⎢

⎤

⎦
⎥

Next we substitute our value for the central density (ρc =3M/πR3):

Eq. 9.26 P = Pc −
9M 2G
πR6

2
3
− 7r
9R

+ r2

4R2
⎡

⎣
⎢

⎤

⎦
⎥ r

2

We require that the pressure in the star should drop  to essentially  zero at the surface (P(R) = 
0), and this gives a value for the central pressure:

Eq. 9.27 

� 

Pc = 9M
2G

πR6
2
3
− 7
9

+ 1
4

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ R

2 = 5GM
2

4πR4

Substituting ζ = r/R, our expression for the pressure is then as follows:

Eq. 9.28 P = GM
2

πR4
5
4
−ζ 2 6 − 7ζ + 9

4
ζ 2⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= Pc 1−ζ

2 24
5

− 28
5
ζ + 9

5
ζ 2⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
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From above, we have the density function in a similar form:

Eq. 9.29 ρ = 3M
πR3

1−ζ( ) = ρc 1−ζ( )

If we now assume that radiation pressure is negligible (Pr << Pg), we can find the temperature 
from the ideal gas law:  P ≈ Pg = ρℜT/µ .

Eq. 9.30 

� 

T = µP
ℜρ

= µ
ℜ

GM 2

πR4
5
4
− 6ζ 2 + 7ζ 3 − 9

4
ζ 4

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

3M
πR3

1−ζ( )
= µ
ℜ
G
3
M
R
1
4
5+ 5ζ −19ζ 2 + 9ζ 3[ ]

Eq. 9.31 T = GMµ
12ℜR

5 + 5ζ −19ζ 2 + 9ζ 3⎡⎣ ⎤⎦ = Tc 1+ζ − 19
5
ζ 2 + 9

5
ζ 3⎡

⎣⎢
⎤
⎦⎥

 where 

� 

Tc = 5
12

GM
R

µ
ℜ

This all assumes a constant value of µ, which is not unreasonable, given the small range of 
values for this quantity.

To summarize, the linear model predicts the following properties:

 

� 

ρc = 3M
πR3

  ρ = ρc (1 – ζ)

 

� 

Pc = 5GM
2

4πR4
  P = Pc 1−

24
5
ζ 2 + 28

5
ζ 3 − 9

5
ζ 4⎡

⎣⎢
⎤
⎦⎥

 

� 

Tc = 5GMµ
12Rℜ

  T = Tc 1+ζ − 19
5
ζ 2 + 9

5
ζ 3⎡

⎣⎢
⎤
⎦⎥

How well does this model work?  Let us insert values for the Sun and calculate its central 
values.  We will need the following:

M = 1 M☉ = 1.99 ×1033  R = 1 R☉ = 6.96 ×1010  G = 6.67 ×10–8  ℜ = 8.314 ×107     
X = 0.73 Y = 0.25 Z = 0.02 ⇒  µ = [2X + 3/4 Y + 1/2 Z]–1 ≈ 0.6
Then the central values are as follows:

Eq. 9.32 

� 

ρc = 3M
πR3

=
3 1.99e33( )
π 6.96e10( )

= 5.64

Eq. 9.33 

� 

Pc = 5GM
2

4πR4
=
5 6.67e− 8( ) 1.99e33( )2

4π 6.96e10( )4
= 4.48×1015

Eq. 9.34 

� 

Tc = 5GMµ
12Rℜ

=
5 6.67e− 8( ) 1.99e33( ) 0.6( )
12 6.96e10( ) 8.314e7( )

= 5.73×106

We now compare these results with the same central values calculated by numerical models 
of the Sun:  Model 7-14 in Novotny (1973) and Model 13.2 in Bohm-Vitense (1992).  
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Table 9.2:  Linear Model comparison     (T6 = T/106)

� 

ρc

� 

Pc T6c

Linear Model 5.64 4.48E+15 5.73

Novotny 7-14 85.15 1.62E+17 13.9

Bohm-Vitense 13.2 148 2.29E+17 15.6

Each of the central values for the linear model is considerably lower than the corresponding 
values from the numerical models; this would seem to imply that the density distribution in the 
Sun is not very close to linear.  We will need to look for a better model.

Polytropes
So far we have three stellar structure equations:

1. Mass Continuity    

� 

dMr

dr
= 4πρ r2   with variables Mr , ρ, r 

2. Hydrostatic Equilibrium  

� 

dP
dr

= −GMrρ
r2

  with variables P, Mr , ρ, r 

3. Equation of State   

� 

Pg = ρℜT
µ

  with variables Pg , ρ, T 

The equation of state added another equation to the list but also introduced another variable 
(T); thus, we still require another equation to solve the problem.  What other limitation can be 
placed on stellar structure?

In the early  days of astrophysics there were no computers with which to construct numerical 
models of stars.  Instead, considerable effort was expended in finding combinations of functions 
and differential equations that  could then be solved to produce reasonable stellar models.  One of 
the next equations to be considered was the polytropic law:

Eq. 9.35 

� 

P = Kρ
n+1

n   where K is a constant and n is the polytropic index

If this law does indeed apply, then a solution can be found (in conjunction with the existing 
stellar structure equations).  A gaseous sphere in hydrostatic equilibrium that obeys the 
polytropic law is called a polytrope of index n.

Of course, any relation between pressure and density could be used to find a solution; why 
should we use this one?  The answer is that if we can argue that there are real stars that can be 
described by a polytropic law, then this could be a useful path to follow.

Relevant Polytropes
Consider a 'boiling' star – a star in adiabatic convective equilibrium.  Such a star is 

completely convective, with mass elements rising and falling without exchanging heat with their 
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surroundings as they transport energy from the inside of the star to the surface.  If we assume that 
radiation pressure is negligible (P ≈ Pg), then the adiabatic law applies:

Eq. 9.36 P = K ργ   where γ = CP /CV , the ratio of specific heats

The first law of thermodynamics says that the heat added to a system (dQ) is equal to the 
change in the internal energy of the system (dU) plus the work done by the system (dW = PdV):

Eq. 9.37 dQ = dU + dW = dU + PdV

Any system has some capacity to absorb energy from its surroundings, but this capacity  will 
depend on whether or not the system is capable of doing any  work.  Because a gas must change 
its volume in order to do work, a gas that is constrained at  a constant volume will be unable to do 
work and thus will absorb less energy than a gas that  is not so constrained.  In such a case, any 
heat absorbed by the gas must be stored as internal energy, producing a rise in temperature.  The 
amount of heat required to raise the temperature of a mole of gas at constant volume by one 
degree is the specific heat capacity CV .  On the other hand, a gas held at a constant pressure 
will be able to expand and do work as heat  is added to it, permitting a greater amount of energy 
to be absorbed.  The amount of heat required to raise the temperature of a mole of gas at constant 
pressure by one degree is the specific heat capacity CP .

For one mole of gas, we have the following relations:

Eq. 9.38 PV = ℜT  (the ideal gas law)

Eq. 9.39 U = 3/2 kT (per particle) 

� 

⇒  U = 3/2 ℜT (per mole) for a monatomic gas

Then we may define the specific heat capacities and determine values for them:

Eq. 9.40 

� 

CV ≡
∂Q
∂T V

= ∂U
∂T

= 3
2ℜ

Eq. 9.41 

� 

CP ≡
∂Q
∂T P

= ∂U
∂T

+P ∂V
∂T

=CV +P ∂
∂T

ℜT
P

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 3

2ℜ+ ℜ = 5
2ℜ

So for a monatomic gas, CV = 3/2ℜ, CP = 5/2ℜ, and the ratio of specific heats is then as 
follows:

Eq. 9.42 

� 

γ =CP
CV

= 5 3

Noting that the adiabatic law is also a polytropic law, we can solve for the polytropic index:

Eq. 9.43 

� 

n+1
n

= γ = 5 3 ⇒ n = 32

Thus, a fully convective star in hydrostatic equilibrium, with negligible radiation pressure is 
a polytrope of index 1.5.

We may obtain another possible polytrope by considering a star with radiation pressure:

Eq. 9.44 P = Pg + Pr
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If we let Pg = βP and Pr = (1 – β)P, we can then combine these to eliminate P :

Eq. 9.45 βPr = (1 – β)Pg

Then, inserting the standard expressions for the two pressures we obtain an equation in T :

Eq. 9.46 

� 

β
3
aT 4 = 1−β( ) ρℜT

µ

This can be solved for T :

Eq. 9.47 

� 

T = 3
a
ℜ
µ
1−β
β

ρ
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

1
3

The total pressure is then given by the following:

Eq. 9.48 

� 

P =
Pg
β

= ρℜT
βµ

= 3
a

ℜ
µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
4
1−β
β 4

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
3

ρ
4
3

Now if β and µ are constant with r, this equation takes on an interesting form:

Eq. 9.49 P = K'ρ4/3 where ′K = 3
a

ℜ
µ

⎛
⎝⎜

⎞
⎠⎟

4
1− β
β 4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
3

Once again we have a polytropic law, this time with γ = 4/3 = (n+1)/n  ⇒  n = 3.  Therefore we 
may conclude that a star in radiative equilibrium – with no convection – is a polytrope of index 
3.  This particular polytrope is called the Standard Model.  

Note:  This expression for K' is only  good for n = 3.  K' is different from the general K.  Also 
note that for n = 3, β is constant throughout the star; for n = 1.5, β can be calculated from β =  
Pg /P , but it is not assumed to be constant.

The Lane-Emden Equation
Although we now have better methods for generating stellar models, polytropes are still 

useful as first approximations to obtain T(r) and ρ(r).  How do we obtain these functions?

We begin with the equation of hydrostatic equilibrium dP
dr

= −GMrρ
r2

⎛
⎝⎜

⎞
⎠⎟  , written as follows:

Eq. 9.50 

� 

r2

ρ
dP
dr

= −GMr

We then take the derivative and substitute the mass continuity equation:

Eq. 9.51 

� 

d
dr

r2

ρ
dP
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −G dMr

dr
= −4πGr2ρ
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Eq. 9.52 

� 

1
r2

d
dr

r2

ρ
dP
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −4πGρ

Next we use the polytropic law 

� 

P = Kρ
n+1

n⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  to substitute for the pressure:

Eq. 9.53 K
r2

d
dr

r2

ρ
d
dr

ρ
n+1
n

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − 4πGρ

It now becomes convenient to introduce dimensionless variables, called the Emden 
variables.  These are a temperature variable θ ≡ T/Tc (not to be confused with θ ≡ 5040/T – seen 
in previous chapters), and a radius variable ξ ≡ r/α (not to be confused with ζ ≡ r/R – used earlier 
in this chapter).  As before, Tc is the central temperature; the quantity α will be named later.

We can introduce the variable θ by first writing the polytropic law as a ratio:

Eq. 9.54 

� 

P
Pc

= ρ
ρc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n+1
n

Next we do the same for the ideal gas law (assuming a constant µ and P ≈ Pg):

Eq. 9.55 

� 

P
Pc

= ρT
ρcTc

Equating these two allows us to eliminate the pressure:

Eq. 9.56 ρ
ρc

⎛
⎝⎜

⎞
⎠⎟

1
n
= T
Tc

= θ ⇒ ρ = ρcθ
n  and 

� 

P = Pcθ
n+1

The variable θ is an as-yet-unknown function of ξ (equivalent to T(r)).  Determination of this 
function would then lead directly to functions for density and pressure.

We now make substitutions into Equation 9.53, setting r = αξ  and ρ = ρcθ
 n :

Eq. 9.57 K
αξ( )2

d
αdξ

αξ( )2
ρcθ

n
ρc
n+1
n

α
d θ n+1( )
dξ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= − 4πGρcθ

n

Eq. 9.58 K
α 2

ρc
1
n

ξ2
d
dξ

ξ2

θ n n +1( )θ n dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = − 4πGρcθ

n

Next we collect the constants:

Eq. 9.59 
n +1( )Kρc

1
n
−1

4πGα 2 ⋅ 1
ξ2

d
dξ

ξ2 dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −θ n
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We will now conveniently define α:

Eq. 9.60 

� 

α ≡
n+1( )Kρc

1−n
n

4πG

The result is the Lane-Emden equation:

Eq. 9.61 1
ξ2

d
dξ

ξ2 dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −θ n

Solution of this second-order differential equation gives θ(ξ) ⇒ T(r).  We will need two 

boundary conditions – both at the center of the star (r = 0):  T(0) = Tc and 

� 

dT
dr 0

= 0 .  In terms of 

our dimensionless variables, the boundary conditions will occur at ξ = 0, where θ(0) = 1 and 

� 

dθ
dξ 0

= 0 .

We also prefer that as r → R, T → 0 .  This means that we want a function θ(ξ) that goes to 0 
at some ξ = ξ1 , where ξ1 is the first zero of θ – corresponding to r = R.  (The behavior of θ(ξ) 
beyond ξ1 is irrelevant.)

We now calculate the basic stellar properties in terms of the polytropic variables and 
constants.

Radius
Radius is determined from the definition of ξ:  

Eq. 9.62 

� 

r =αξ ⇒ R =αξ1 =
n+1( )K
4πG

ρc

1−n
2n ξ1

Mass
The mass interior to a point is found from the mass continuity equation:

Eq. 9.16 Mr = 4πρ( ′r )
0

r

∫ ′r 2d ′r   

� 

⇒ M ξ( ) = 4πα 3ρc ξ 2
0

ξ∫ θ ndξ

We then substitute the Lane-Emden equation into the integral:

Eq. 9.63 M ξ( ) = −4πα 3ρc
d
dξ

ξ2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟0

ξ

∫ dξ = −4πα 3ρcξ
2 dθ
dξ

Finally we insert the value of α to obtain the desired expression:

Eq. 9.64 M ξ( ) = 4π n +1( )K
4πG

⎡
⎣⎢

⎤
⎦⎥

3
2

ρc
3−n
2n −ξ2 dθ

dξ
⎛
⎝⎜

⎞
⎠⎟

Note that for n = 3, Mr is independent of ρc .
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Total Mass
The total mass is found by evaluating Equation 9.64 at the first zero:

Eq. 9.65 M ξ1( ) = 4π n +1( )K
4πG

⎡
⎣⎢

⎤
⎦⎥

3
2

ρc
3−n
2n −ξ1

2 dθ
dξ ξ1

⎛

⎝
⎜

⎞

⎠
⎟

Mean Density
We first write a general expression for the mean density of the portion of the star interior to 

radius r :

Eq. 9.66 ρ ξ( )= M ξ( )
4
3πα

3ξ3
=
4πα 3ρcξ

2 −dθ dξ( )
4
3πα

3ξ3
= 3
ξ

− dθ
dξ

⎛
⎝⎜

⎞
⎠⎟
ρc

We then evaluate this expression at the first zero:

Eq. 9.67 ρ ξ1( )= 3
ξ1

− dθ
dξ

⎛
⎝⎜

ξ1

ρc ⇒ ρc
ρ

= ξ1

3 − dθ
dξ

⎛
⎝⎜

ξ1

From this expression, we see that the ratio of central density to mean density depends only on 
the polytropic index (which determines the function θ).  This ratio is tabulated for different 
indices n.

Mass-Radius Relation
Some groups of stars appear to exhibit correlations between their masses and their radii.  

Here we explore the relation between the mass and the radius of a polytrope.
We first use the definition of α to solve for the central density:

Eq. 9.68 

� 

ρc = R
ξ1

4πG
n+1( )K

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2n
1−n

This is then inserted into the expression for the total mass:

Eq. 9.69 

M ξ1( ) = 4π n +1( )K
4πG

⎡
⎣⎢

⎤
⎦⎥

3
2

ρc
3−n
2n −ξ1

2 dθ
dξ ξ1

⎛

⎝
⎜

⎞

⎠
⎟

          = 4π n +1( )K
4πG

⎡
⎣⎢

⎤
⎦⎥

3
2 R

ξ1

⎛
⎝⎜

⎞
⎠⎟

3−n
1−n n +1( )K

4πG
⎡
⎣⎢

⎤
⎦⎥

3−n
2 n−1( )

−ξ1
2 dθ
dξ ξ1

⎛

⎝
⎜

⎞

⎠
⎟

This can be rearranged to group the mass and radius together:

Pierce:  Notes on Stellar Astrophysics Chapter 9:  Stellar Interior Models

175



Eq. 9.70 GM
n−1
n R

3−n
n =

n +1( )K
4π( )1n

−ξ
n+1
n−1 dθ

dξ
⎡

⎣
⎢

⎤

⎦
⎥

n−1
n

ξ1

And this can be simplified by  defining some additional constants, which are tabulated in the 
literature:

Eq. 9.71 ωn ≡ −ξ1
n+1
n−1 dθ

dξ ξ1

   and

Eq. 9.72 Nn ≡
1

n +1
4π
ωn

n−1

⎡

⎣
⎢

⎤

⎦
⎥

1
n

The result is the mass-radius relation:

Eq. 9.73 

� 

K = NnGM
n−1
n R

3−n
n

Central Values
The easiest way to find the central density of a polytrope is to multiply the tabulated value 

of ρc ρ  by the calculated mean density:

Eq. 9.74 ρc =
ρc
ρ

⎛
⎝⎜

⎞
⎠⎟ n

M
4
3πR

3

The central pressure can then be found from the adiabatic law (Equation 9.35) or from the 
following:

Eq. 9.75 

� 

Pc =Wn
GM 2

R4
   where Wn ≡ 4π n +1( ) dθ

dξ ξ1

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

(This relation is obtained by substituting Equations 9.67 and 9.73 into Equation 9.35.  The 
constant Wn is tabulated.)

The central temperature is obtained from the central density  and pressure and the equation 
of state:

Eq. 9.76 

� 

Pg = βcPc = ρcℜTc
µ

⇒ Tc = µ
ℜ

βcPc
ρc

Solutions of the Lane-Emden Equation
All that remains is to solve the Lane-Emden equation:

Eq. 9.61 1
ξ2

d
dξ

ξ2 dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −θ n
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The boundary conditions are set at the center of the star (ξ =0), where θ =1 and dθ/dξ = 0.

The n = 0 Solution
We begin by examining the case of n = 0.  This simplifies our equation considerably:

Eq. 9.77 d
dξ

ξ2 dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −ξ2

This integrates easily:

Eq. 9.78 

� 

ξ 2 dθ
dξ

= − 1
3ξ

3 −C ⇒ dθ
dξ

= − 1
3ξ −

C
ξ

As we require that dθ/dξ → 0 as ξ → 0, the constant C must be zero:

Eq. 9.79 

� 

dθ
dξ

= − 1
3ξ

And this also integrates easily:

Eq. 9.80 θ = D – 1/6 ξ 2

The boundary  condition θ(0) =1 requires that D = 1.  Thus, the solution for n = 0 is 
parabolic:

Eq. 9.81 θ0 = 1 – 1/6 ξ 2

The first zero occurs at 

� 

ξ1 = 6 .  And because dθ/dξ = – 1/3 ξ , the mean density and central 
density  are equal (see Equation 9.67).  Thus, n = 0 is the uniform density  case – a rather unlikely 
scenario for a star made from an ideal gas.

The n = 1 Solution
We now attempt a solution for n = 1.  The Lane-Emden equation is then as follows:

Eq. 9.82 1
ξ2

d
dξ

ξ2 dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −θ

This can be solved with the appropriate substitution, letting θ = χ/ξ ; the derivative is then 
modified:

Eq. 9.83 

� 

dθ
dξ

= 1
ξ
dχ
dξ

− χ
ξ 2

These two expressions are inserted into the Lane-Emden equation:

Eq. 9.84 1
ξ2

d
dξ

ξ2 1
ξ
dχ
dξ

− χ
ξ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − χ

ξ
⇒ 1

ξ
dχ
dξ

+ ξ d
2χ
dξ2

− dχ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −χ ⇒ d 2χ

dξ2
= −χ

This equation has a very well-known solution:
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Eq. 9.85 χ = C sin ξ + D cos ξ    ⇒    θ = C sinξ
ξ

+ D cosξ
ξ

Applying the boundary conditions, we find that as ξ → 0, θ → C +D/ξ = 1.  This requires 
that D = 0 and C = 1.  Then the solution for n = 1 is a sinc function, with a first zero at ξ1 = π.

Eq. 9.86 

� 

θ1 = sinξ
ξ

≡ sincξ

The n = 5 Solution
The Lane-Emden equation can also be solved for n = 5, but not easily.  The solution is 

presented here:

Eq. 9.87 

� 

θ5 = 1
1+ 1

3ξ
2

⇒ dθ
dξ

= −ξ

3 1+ 1
3ξ

2( )32

For this solution, θ5 → 0 only as ξ → ∞ :  the first zero is at ξ1 = ∞.  The density ratio is also 
a bit extreme:

Eq. 9.88 ρc
ρ

= ξ1

3 − dθ
dξ

⎛
⎝⎜

ξ1

= ξ1

3 ξ

3 1+ 1
3ξ

2( )32
⎛

⎝
⎜
⎜

ξ1

= lim
ξ→∞

1+ 1
3ξ

2( )32 = ∞

Either ρc is infinite, or ρ = 0 – which would mean that the radius is infinite (or perhaps both 

may be true).  Clearly, n = 5 marks an upper limit on polytropes.

Polytropic Models
The polytropic index ranges from 0 to 5.  Only  n = 0, 1, and 5 can be solved analytically; but 

the various constants have been tabulated for other values of n over this range (see 
Chandrasekhar (1967), Clayton (1968), Bowers & Deeming (1984), etc.).  

Tables of the various polytropic functions over the range of ξ from 0 to ξ1 are also available 
(see Novotny (1973) Tables 10-11 and 10-12; note that she uses ξ0 as the first  zero, in place of 
ξ1).  These allow us to construct profiles of the temperature, density, pressure, etc. throughout the 
interior of the star.  Table 9.3 shows how the Lane-Emden variables relate to the corresponding 
physical variables.

We obtained the linear model for a star by calculating the central values of temperature, 
density, and pressure and using them to scale the respective functions of r (or ζ).  Similarly, we 
can use polytropic expressions to calculate these three central values and then combine them 
with a solution of the Lane-Emden equation for θ (ξ) to give us temperature, density, and 
pressure throughout the interior (using T = Tc θ, ρ = ρc θ

 n, and P = Pc θ
 n+1).  The limited range 

of polytropic indices provides a small number of different solutions for θ(ξ), but we can obtain 
different models by starting with different central values.  Because the solutions θn(ξ) depend 
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only on the polytropic index n, we may tabulate the constants (ξ1, (ρc /ρ )n , ωn , Nn , Wn , etc.) for 

the appropriate range of indices and then apply them to specific models.  

Table 9.3:  Lane Emden variables
 Lane-Emden variable physical variable relation
 ξ r r = αξ
 ξ/ξ0  r/R r/R = ξ/ξ0 (use direct from the table)
 θ T T = Tc θ 

 dθ
dξ

 dT
dr

 

� 

dT
dr

= Tc
α
dθ
dξ

 θ n ρ ρ = ρc θ
 n 

 θ n+1 P P = Pc θ
 n+1 

 −ξ2 dθ
dξ

 Mr 

� 

Mr = 4πα 3ρc −ξ 2 dθ
dξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

To calculate a polytropic model, we begin with the star's mass, radius, and composition (X, Y, 
Z).  From these we can calculate µ (= [2X + 3/4 Y + 1/2 Z]–1) and ρ (= 3M/4πR3).  Choosing a 

polytropic index n, we can look up  the corresponding values of (ρc /ρ )n and Wn and use these to 

find ρc and Pc .  Central temperature is found from the ideal gas law:

Eq. 9.89 

� 

Tc = µ
ℜ
Pg,c

ρc

= µ
ℜ

βcPc
ρc

≈ µ
ℜ
Pc
ρc

if βc ≈ 1

If βc is not assumed to be 1, then we can estimate βc , calculate Tc , and find a new βc value:

Eq.9.90  

� 

βc =1− Pr
Pc

=1−
1
3 aTc

4

Pc

As an example, let us use polytropes of indices 1.5 and 3 to model a star with M = 2.25 M☉ 

and R = 1.4559 R☉ (Novotny (1973) Model 7-21); these values give ρ  = 1.0291 and  GM 2/R4 = 

1.271×1016.  The composition used in the model is X = 0.708, Y = 0.272, Z = 0.020, which yields  
µ =0.6135; βc = 1 is assumed.

The necessary polytropic constants are obtained from the literature:
W1.5 = 0.77014 W3 = 11.05066  (ρc /ρ )1.5 = 5.99071 (ρc /ρ )3 = 54.1825

Table 9.4 compares the resulting central values for the two polytropes and the linear model 
with the values generated by Novotny's numerical model.
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Table 9.4:  Model comparisons with Novotny 7-21

ρc Pc T6c

Linear Model 4.12 5.06E+15 9.07

n = 1.5 6.16 9.79E+15 11.7

n = 3 55.8 1.41E+17 18.6

Novotny 7-21 58.9 1.77E+17 22.2

As a second example, we perform the same calculations for a star with M = 3 M☉ and R = 

1.7381 R☉ (Novotny  Model 7-22); these values give ρ = 0.8064 and GM 2/R4 = 1.113×1016.  The 

composition is the same as above, and we will be using the same polytropic constants.  Results 
are shown in Table 9.5.

Table 9.5:  Model comparisons with Novotny 7-22

ρc Pc T6c

Linear Model 3.23 4.43E+15 10.1

n = 1.5 4.83 8.57E+15 13.1

n = 3 43.7 1.23E+17 20.8

Novotny 7-22 41.3 1.35E+17 24.1

It would seem that the standard model polytrope (n = 3) gives the best approximation for the 
central values in each case.  Of course, this depends on the type of star being modeled – in both 
cases, an upper main sequence star.

Table 9.6:  Density, pressure, and temperature values at r ≈ 1/4 R 

Model ζ =ξ/ξ1 r / R☉ ρ / ρc ρ P / Pc P T / Tc T6

Linear 0.2465 0.3589 0.7535 3.10 0.7856 3.97E+15 1.0426 9.45

n = 1.5 0.2463 0.3586 0.8155 5.03 0.7118 6.97E+15 0.8728 10.2

n = 3 0.2465 0.3589 0.2924 16.3 0.1941 2.73E+16 0.6638 12.3

Nov. 7-21 0.2469 0.3595 0.3282 19.3 0.1760 3.12E+16 0.5546 12.3

As a further check, in Table 9.6 we compare values of density, pressure, and temperature at a 
point away from the center at an approximate radius given by ζ = ξ /ξ1 =0.2465, again using 
Novotny Model 7-21. 
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Once again, the standard model provides the best match to Novotny's 7-21, for all three 
properties.  Polytropes can give reasonable approximations in many cases, although they lack the 
details used to produce the numerical models.

The Isothermal Gas Sphere
We have already  noted that the practical range of polytropic indices is from n = 0 (the 

uniform density case) to n = 5 (the infinite central density  case).  Another interesting possibility 
is the uniform temperature case – the isothermal gas sphere.  To investigate this we first write 
the ideal gas law (assuming P ≈ Pg):

Eq. 9.91 

� 

P = ρℜT
µ

= Kρ

Comparing this to the polytropic law, we determine a polytropic index:

Eq. 9.92 

� 

P = Kρ
n+1
n ⇒ n+1

n
=1 ⇒ n = ∞

The previous polytropic derivation is not valid for n = ∞; instead we begin again by taking 
the derivative of the ideal gas law, assuming a constant temperature:

Eq. 9.93 

� 

dP
dr

= ℜT
µ

dρ
dr

This is inserted into Equation 9.52:

Eq. 9.94 

� 

1
r2

d
dr

r2

ρ
dP
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −4πGρ ⇒ 1

r2
d
dr

r2

ρ
ℜT

µ
dρ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −4πGρ

We now substitute ρ = ρce
–ψ and r = αξ :

Eq. 9.95 

� 

−1
α2ξ 2

d
αdξ

α2ξ 2

ρce
−ψ

ℜT
µ

ρce
−ψ

α
dψ
dξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −4πGρce

−ψ

Eq. 9.96 

� 

ℜT
4πGµρc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1
α2

1
ξ 2

d
dξ

ξ 2 dψ
dξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = e−ψ

We then define the constant α :

Eq. 9.97 

� 

α2 ≡ ℜT
4πGµρc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Eq. 9.98 

� 

1
ξ 2

d
dξ

ξ 2 dψ
dξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = e−ψ

This must be integrated numerically, using the following boundary conditions:

  At r = 0,  ρ = ρc   ⇒     At ξ =0, ψ =0   and
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� 

At r = 0, dρ
dr

= 0 ⇒ At ξ = 0, dψ
dξ

= 0

The solution is infinite, with an infinite mass – hardly a realistic model to use.  We may 
conclude that stars are not isothermal gas spheres, at least as long as the ideal gas law is their 
equation of state.

In the next chapter we will continue our quest for appropriate physical laws to apply in the 
study of stellar structure.  Those that we discover will involve the generation and flow of energy 
in the stellar interior.

Pierce:  Notes on Stellar Astrophysics Chapter 9:  Stellar Interior Models

182



CHAPTER 10:  Energy Generation and Transport
In the previous chapter we described several possible equations to be used in modeling the 

stellar interior.  If the polytropic law is not applicable within a star, we are back to just three 
stellar structure equations:  mass continuity, hydrostatic equilibrium, and the ideal gas law as the 
equation of state.  We may obtain more equations by considering the manner in which energy is 
generated and transported inside a star.    

The Radiative Temperature Gradient
We begin by making an assumption about the mode of energy transport within the star.  

Specifically, if we assume radiative transfer, we may use the radiative transfer equation – here 
a modified version of Equation 2.83:

Eq. 10.1 

� 

cosθ dIν
κν ρ dr

= −Iν + Sν

We multiply through by cos θ :

Eq. 10.2 

� 

cos2θ dIν
κν ρ dr

= −Iν cosθ + Sν cosθ

Integrating over solid angle eliminates the source function term, as Sν is presumed to be 
isotropic; the first term on the right becomes the flux.  On the left side, we substitute Iν = Bν(T), 
which is independent of solid angle ω:

Eq. 10.3 

� 

1
κνρ

dBν T( )
dr

cos2θ dω
4π∫ = −Fν ⇒ 4π

3κνρ
dBν T( )
dr

= −Fν

We now use the chain rule to rewrite the derivative:

Eq. 10.4 

� 

dBν T( )
dr

=
∂Bν T( )
∂T

dT
dr

Eq. 10.5 

� 

4π
3κνρ

∂Bν T( )
∂T

dT
dr

= −Fν

We then integrate this expression over frequency:
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Eq. 10.6 

� 

4π
3ρ

dT
dr

1
κν

0

∞∫ ∂Bν T( )
∂T

dν = −F

Next we define the Rosseland mean absorption coefficient 

� 

κ  by the following equation:

Eq. 10.7 

� 

1
κ 

∂Bν T( )
∂T0

∞∫ dν = 1
κν

0

∞∫ ∂Bν T( )
∂T

dν

This allows us to remove the opacity from the integral, which can then be solved.

Eq. 10.8 

� 

4π
3κ ρ

dT
dr

∂Bν T( )
∂T0

∞∫ dν = −F     and

Eq. 10.9 

� 

∂Bν T( )
∂T0

∞∫ dν = d
dT

Bν T( )
0

∞∫ dν =
dB T( )
dT

= d
dT

σT 4

π
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =
4σT 3

π
= acT 3

π

Eq. 10.10 

� 

4π
3κ ρ

dT
dr

acT 3

π
= −F

We now write the flux as the luminosity per unit area:  F = Lr /4πr
2, where Lr is the net  rate of 

radiant energy flowing out of a sphere of radius r.  This leads to the radiative temperature 
gradient – our fourth stellar structure equation:

Eq. 10.11 

� 

dT
dr rad

= − 3
4ac

κ ρ
T 3

Lr
4πr2

= ∇rad( )

This equation provides the rate at which temperature declines with radius in a region of the 
star in which radiative transfer is dominant.

Opacity Sources
To evaluate 

� 

κ  we will use the principal opacity sources in the interior:  free-free absorption, 
bound-free absorption, and electron scattering.  Expressions for each opacity, averaged over 
frequency, are as follows:

Eq. 10.12 

� 

κ ff =κoρT
−3.5   where κo = 3.68 ×1022 (1+X)(1–Z)

� 

g ff

This is Kramers' opacity; X and Z are composition variables, and 

� 

g ff is the frequency-

averaged Gaunt factor, which is on the order of 1.

Eq. 10.13 

� 

κ bf =κoρT
−3.5   where κo = 4.34 ×1025 Z(1+X)

� 

g bf /t

Here 

� 

g bf is another frequency-averaged Gaunt factor, and t is the guillotine factor, ranging 

from 1 to 100, which corrects for an overestimate of bound electrons.  (When the last electron is 
lost, bound-free absorption can no longer occur (the guillotine has fallen).)  Novotny (1973) 
Table 10-15 gives guillotine factors.
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Eq. 10.14 

� 

κe = σTNe

ρ
= 0.2 1+ X( )

This is Thomson scattering – discussed in Chapter 7 – which is frequency independent.  
These sources can be added to produce a mean opacity:  κ = κff + κbf + κe .  The relative 
importance of each source will depend on the temperature, density, and composition at the point 
in question.

The Eddington Limit
We can rearrange the radiative temperature gradient as follows:

Eq. 10.15 

� 

κ ρLr

4πr2c
= − 4aT 3

3
dT
dr

= − d
dr

1
3

aT 4⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = − d

dr
1
3

u
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = − dP

dr
= ρ˙ ̇ r 

Here u is the radiation energy density, and 

� 

˙ ̇ r  is the acceleration of the gas due to radiation 
pressure.

Eq. 10.16 

� 

˙ ̇ r = κ Lr

4πr2c

The outermost layers of the star are pushed outward by radiation pressure and pulled inward 
by gravity.  The star will be stable as long as the net acceleration is inward; for what parameters 
will this be true?  We begin by writing the condition for stability:

Eq. 10.17 

� 

κ Lr
4πr2c

≤ GMr

r2

This places an upper limit on the star's luminosity:

Eq. 10.18 

� 

Lr ≤
4πcGMr

κ 

At the surface of the star, Lr = L and Mr = M; then we may  write L = LEdd :  the Eddington 
limit.

Eq. 10.19 

� 

LEdd = 4πcGM
κ 

We may carry this further by  assuming the opacity is due primarily  to Thomson scattering, 
for which κe = 0.2(1+X):

Eq. 10.20 
 

LEdd
L

=
4πcGM

0.2 1+ X( )L
M
M

=
4π 2.998e10( ) 6.674e− 8( ) 1.989e33( )

0.2 1+ X( ) 3.845e33( )
M
M

Eq. 10.21 
 

LEdd
L

= 65030
1+ X

M
M

= 38250 M
M

   for X ≈ 0.7

On the main sequence, a mass-luminosity relation exists.  Bowers and Deeming (1984) give 
this relation for upper main sequence stars:
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Eq. 10.22 
 

L
L

= 100.479 M
M

⎛
⎝⎜

⎞
⎠⎟

2.91

The previous two equations can be combined to eliminate the luminosity:

Eq. 10.23 
 
38250 M

M

= 100.479 M
M

⎛
⎝⎜

⎞
⎠⎟

2.91

= 3.01 M
M

⎛
⎝⎜

⎞
⎠⎟

2.91

Eq. 10.24 
 

M
M

= 38250
3.01

⎡
⎣⎢

⎤
⎦⎥

1
1.91

= 141

This mass marks the maximum mass a star may have without blowing itself apart  by 
radiation pressure.  Extremely massive stars will not be stable.

The Adiabatic Temperature Gradient
In some stars, energy transport is convective, rather than radiative.  In such stars, local 

density  fluctuations produce bubbles of gas that are hotter and less dense than their surroundings 
and thus rise until they eventually reach equilibrium with and mix with the surrounding gas.  In 
this manner, rising convective cells transport energy – stored as the internal energy of the gas – 
toward the outside of the star.  The process is assumed to be adiabatic, meaning no energy  is 
transferred to or from the cells as they  rise.  The question is how the temperature varies with 
radius in such a convective star (or region of a star).

Because the convective process is adiabatic, we need a pressure-temperature relation that is 
valid for dQ = 0.  The first law of thermodynamics becomes our starting point:

Eq. 10.25 dQ = dU + dW where dQ =CP dT, dU =CV dT, and dW =PdV

With the adiabatic condition (dQ = dU +dW = 0), we have the following:

Eq. 10.26 0 = CV dT + PdV

We then differentiate with respect to T :

Eq. 10.27 

� 

0 =CV +P dV
dT

Differentiating the ideal gas law (PV = ℜT) with respect to T gives the following:

Eq. 10.28 

� 

P dV
dT

+V dP
dT

= ℜ ⇒ P dV
dT

= ℜ−V dP
dT

This is inserted into the previous equation:

Eq. 10.29 

� 

0 =CV + ℜ−V dP
dT

=CP −V
dP
dT

We now reuse the ideal gas law:
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Eq. 10.30 

� 

V = ℜT
P

= CP −CV( )T
P

Inserting this into the previous equation yields a temperature-pressure relation:

Eq. 10.31 

� 

0 =CP − CP −CV( )T
P

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
dP
dT

Eq. 10.32 

� 

dT
T

= CP −CV

CP

dP
P

= γ −1
γ

dP
P

This can also be written in log form:

Eq. 10.33 

� 

d lnT = γ −1
γ

d lnP ⇒ d lnP = γ
γ −1

d lnT

Eq. 10.34 

� 

P = KT
γ
γ−1

Inserting another form of the ideal gas law (T=Pµ/ρℜ) we obtain an expected result:

Eq. 10.35 P = K Pµ
ρℜ
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Eq. 10.36 Pγ −1 = K P
ρ

⎛
⎝⎜

⎞
⎠⎟

γ

     ⇒     P = Kρ γ    (the adiabatic gas law)

Equation 10.33 provides the required P - T relation, which can appear in several different, but 
equivalent forms, including the following:

Eq. 10.37 

� 

d lnT
d lnP

= γ −1
γ

   or

Eq. 10.38 

� 

dT
dr

= γ −1
γ

T
P
dP
dr

We now insert the ideal gas law (T/P =µ/ρℜ) and the hydrostatic equilibrium equation into 
Equation 10.38:

Eq. 10.39 dT
dr

= γ −1
γ

µ
ρℜ

−GMr ρ
r2

⎛
⎝⎜

⎞
⎠⎟ = − γ −1

γ
GMr µ
ℜr2

We next write the ratio of specific heats (γ = CP /CV ) in terms of the polytropic index n:

Eq. 10.40 

� 

γ = n+1
n

⇒ γ −1= 1n ⇒ γ −1
γ

= 1
n+1

Inserting this gives us our final form for the adiabatic temperature gradient – our fifth 
stellar structure equation:
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Eq. 10.41 dT
dr ad

= − GMr µ
n +1( )ℜr2 = ∇ad( )

The appropriate value of n to use in this case would be 1.5 (from our earlier discussion of 
polytropes); as before, this corresponds to γ = 5/3 .

The adiabatic temperature gradient  tells the rate at which temperature changes with radius for 
a star (or region of a star) in convective equilibrium.  We previously derived the radiative 
temperature gradient, which tells the rate at which temperature changes with radius for a star (or 
region of a star) in radiative equilibrium.  This means that we have expressions for two different 
temperature gradients, but it  is unlikely  that they can both be correct for a given region of the 
star.   How will we know which one to use?  How will the star know?  As stars do not use 
computers, there had better be a good physical explanation that the star can understand.

Convection vs. Radiation
 The star must be able to figure out when to use ∇rad and when to use ∇ad .  These are both 

temperature gradients, and both of them are negative.  T diminishes with r in each case, but in 
general, the rates will be different; one will be steeper, and the other will be shallower.

Consider a region of the star in radiative equilibrium, in which T vs. r is given by  ∇rad as 
shown in Figure 10.1a.  The gas properties at radius r1 are ρ, T, and P.

Figure 10.1:  Conditions for convective instability
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Now suppose that a local temperature fluctuation occurs at r1 such that a bubble forms with 

temperature T' (r1) > T(r1), as shown in Figure 10.1a.  Then if P' (inside the bubble) equals P 
(outside the bubble) – as it will – then ρ'  (r1) < ρ(r1).  This lower density  bubble will rise 
adiabatically without mixing, following the local adiabatic gradient ∇ad .  How does this 
adiabatic gradient compare with the radiative gradient ∇rad?

In general, there are two possibilities of interest for ∇ad :  it  may either be steeper (∇ad(A)) or 
shallower (∇ad(B)) than ∇rad .  These two cases are illustrated in Figure 10.1b.

Case A (∇ad(A)):  As the bubble rises, it follows the steeper adiabatic curve (A) until it 
intersects the original radiative curve at r2 .  At this point, T' (r2) = T(r2), ρ' (r2) = ρ(r2), and the 
rise stops.  Further convection does not occur, and the gas continues to use radiative transfer 
because convection cannot be sustained.
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Case B (∇ad(B)):  The rising bubble follows the shallower adiabatic curve (B), which does not 
intersect the original radiative curve.  The bubble remains hotter – and therefore less dense – 
than the surroundings and continues to rise, producing convection.

Thus the gas will be stable against convection where the adiabatic gradient is steeper than the 
radiative gradient; convection will not occur, and the gas will rely  on radiative transfer to 
transport energy.  Convection will occur where the adiabatic gradient is shallower than the 
radiative gradient.  In general, the star will use the energy transport process that has the 
shallower gradient.

Recalling the radiative temperature gradient 

� 

∇rad = − 3
4ac

κ ρ
T 3

Lr
4πr2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , we note that this will 

be relatively  steep  when the opacity is high, the density is high, or the temperature is low.  Under 
such conditions, the photon flow will be impeded, and radiative transfer will not provide an 
efficient means of transporting energy.  Instead, the energy will remain locally in the gas, 
creating bubbles with higher temperatures and initiating convection.  Very  simply, the star 
transports energy using the most efficient process it  has available.  Even computers can be taught 
to make this choice.

Energy Generation
The radiative temperature gradient introduced Lr – the luminosity generated within r ; 

therefore, we will need another equation with this quantity, perhaps one that addresses the issue 
of energy generation in the star.

Thermal Equilibrium
Let us begin by  defining ε as the energy per gram per second produced within a shell of 

matter.  The energy generation rate for the shell (dLr) will then be equal to the shell mass (dMr) 
multiplied by ε:

Eq. 10.42 dLr = ε dMr

Inserting the mass continuity equation (dMr =4πρr2dr) we arrive at the equation of thermal 
equilibrium – our sixth stellar structure equation:

Eq. 10.43 dLr = ε 4πρr2dr     ⇒     dLr
dr

= 4πρr2ε

Of course, this equation introduces still another quantity  that will need to be calculated.  The 
energy generation rate per gram is likely  to be a function of density, temperature, and 
composition.  Additionally, there may be several mechanisms by which the star may produce 
energy.  We will consider the two principal mechanisms:  gravitational contraction and nuclear 
reactions.

Gravitational Contraction
A star undergoing gravitational contraction will release gravitational potential energy in the 

process.  For a shell of mass dMr , the potential energy dΩ is as follows:
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Eq. 10.44 

� 

dΩ = −GMr

r
dMr

This can be integrated to give the potential energy of the entire star:

Eq. 10.45 

� 

Ω = − GMr

r0

M∫ dMr

The thermal energy (T) of the star is 3/2 kT  per particle = 3/2 ℜT per mole = 3/2 ℜT/µ per gram 
= 3/2 P/ρ per gram.  Then the total thermal energy in a shell of mass dMr =4πρr2dr is as follows:

Eq. 10.46 3
2
P
ρ
dMr =

3
2
⋅4π r2Pdr

And the total thermal energy in the star is found by integrating this expression:

Eq. 10.47 Τ = 3
2 4π r2

0

R

∫ Pdr

The integration proceeds by parts, letting u = P and dv = r2dr :

Eq. 10.48 

� 

Pr2
0

R∫ dr = Pr 3

3 0

R

− r 3

3
dP
dr0

R∫ dr

The first  term vanishes because P(R) = 0.  We then utilize hydrostatic equilibrium (even 
though the star is contracting, for it is a very gradual contraction):

Eq. 10.49 
Τ = 3

2 4π r
3

3
−dP
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⎛
⎝⎜

⎞
⎠⎟0

R

∫ dr = 3
2 4π r

3

3
GMrρ
r2

⎛
⎝⎜

⎞
⎠⎟0

R

∫ dr

   = 1
2

GMr

r
⎛
⎝⎜

⎞
⎠⎟ 4π r2ρ

0

R

∫ dr = 1
2

GMr

r
⎛
⎝⎜

⎞
⎠⎟0

M
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The result  says that the thermal energy of a star is one half of the magnitude of the star's 
gravitational potential energy; furthermore, reducing the potential energy through gravitational 
contraction will increase the thermal energy, but only  by one half of the amount of potential 
energy released.

Eq. 10.50 ΔT = – 1/2 Δ Ω

This a statement of the virial theorem:  only  half of a star's gravitational potential energy is 
available to be converted into thermal energy; the remainder is radiated away and lost to the star.  
Thus there is a link between the rate of contraction and the luminosity of a star; knowing the 
luminosity, we can calculate the contraction rate, and therefore the lifetime of such a star.

Kelvin-Helmholtz Time Scale
Assuming a contraction from R = ∞ (where Ω = 0) to the present radius, the change in 

potential energy should be equal to its current value:
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Eq. 10.51 

� 

ΔΩ = Ω ≈ −GM
2

R

By the virial theorem, only half of this energy is available for radiation:

Eq. 10.52 

� 

ΔE = − 1
2 ΔΩ = GM 2

2R

Assuming a constant luminosity over time, L = ΔE/Δt, and from this we can estimate the 
lifetime of the star – the time required to reach its present state:

Eq. 10.53 

� 

Δt = ΔE
L

= GM 2

2RL

In studying the evolution of stars, it  is important to know the approximate time scale over 
which a process operates.  For gravitational contraction or cooling by radiation losses, the 
appropriate value is the Kelvin-Helmholtz (or thermal) time scale, which is very similar to our 
value above:

Eq. 10.54 tKH = GM
2

RL
  

For the Sun, tKH ≈
6.7e− 8( ) 2e33( )2
7e10( ) 3.8e33( ) ≈1015s ≈ 32 million years.  The Sun's age would then be 

estimated at about half this value, or about 16 million years.  Geologists regard this as 
insufficient time to produce the various geological features on the Earth, meaning that 
gravitational contraction is not apt to be the principal energy source for the Sun. 

Nuclear Reactions
Stars may also obtain energy by performing nuclear reactions.  These can be divided into two 

types:  those in which nuclei combine to form a larger nucleus (fusion), and those in which a 
nucleus splits apart into smaller nuclei (fission).  As most stars contain relatively few large 
nuclei, we will ignore fission for now and concentrate on fusion reactions.

During the fusion process, energy will be released if the sum of the reactant masses is greater 
than the mass of the product nucleus.  Such reactions are exothermic.  If this same mass 
difference is negative, the reaction is endothermic, and it absorbs energy rather than releasing it.  
Stars in equilibrium require exothermic reactions in order to replace the energy that is lost 
through luminosity.

The link between the change in mass (Δm) and the energy  released is given by Einstein's 
equation:

Eq. 10.55 E = (Δm)c2

This can be illustrated by a simple example:  consider the fusion of hydrogen into helium.  
By examining their approximate atomic masses (1 and 4, respectively) we see that the reaction 
will require four hydrogen nuclei to form one helium.  Determination of Δm demands that we use 
more significant  figures, as the difference is not large.  (Note that we are using atomic masses – 

Pierce:  Notes on Stellar Astrophysics Chapter 10:  Energy Generation and Transport

191



which include the electron masses – even though the electrons do not participate in the reaction.  
This is easier than subtracting the same amount from both sides of the equation.)

 mH =1.00783   4mH =4.03132 amu
 mHe =4.00260 amu
 Δm =0.02872 amu

The conversion efficiency is rather low, as only 0.712% of the reacting mass is changed into 
energy.  At 931.48 MeV per amu, this amounts to 26.75 MeV released per helium atom formed.  
At this rate of energy production, how long can a star last?

Nuclear Time Scale

As a starting point, we introduce the nuclear time scale, in which Mc2 is the nuclear energy 
content of the star.

Eq. 10.56 

� 

tnuc ≈
Mc2

L
 

For the Sun, tnuc ≈
2e33( ) 3e10( )2
3.8e33( ) ≈ 5 ×1020s ≈ 15,000 billion years.  This is obviously a 

much longer time scale than for gravitational contraction, but it needs some refinement before it 
will serve as a good estimate of the lifetime.

First, we predict that hydrogen fusion will require the very high temperatures found only in 
the central core of the star; therefore, we must introduce a core fraction (fc) to reduce our 
available mass to the core mass.  Next we recall that the star will generally not be composed 
exclusively of hydrogen, meaning that we must include the mass fraction (X) of hydrogen to 
further reduce the estimate of reacting mass.  Finally we note that the hydrogen fusion reaction 
does not convert all of the reacting hydrogen into energy – only  a small fraction of it.  Thus we 
must include an efficiency factor (e) in the numerator.  With these modifications we may now 
estimate the life span of a star, with reasonable estimates for the Sun included:

Eq. 10.57 Δt ≈ MfcXec
2

L
≈
2e33( ) 0.1( ) 0.75( ) 0.007( ) 3e10( )2

3.8e33( ) ≈ 2.5 ×1017s ≈ 8 billion years

This estimate is in good agreement with lifetimes calculated from solar models.

The Proton-Proton Chain
So far we have seen that four hydrogen nuclei will provide sufficient mass to form one 

helium nucleus, but we have not yet described the process by which this fusion will occur.  We 
might suppose that it  could proceed by the simultaneous collision of the four hydrogen nuclei, 
resulting in synthesis of a helium nucleus.  However, four-body collisions are highly improbable, 
even in the chaos of the stellar interior, and it turns out that the most likely scenario involves a 
series of two-body collisions.  We now present a sequence of steps by  which hydrogen fusion 
may proceed:  the proton-proton chain.
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Table 10.1:  The proton-proton chain – pp I
  ΔE (MeV) ν loss (MeV) ΔE total ν loss total
[A1] 1H +1H → 2D +e++v +1.442 –0.263 ×2       +2.884 –0.526
[A2] 2D +1H → 3He + γ +5.493  ×2     +10.986
[A3] 3He +3He → 4He +1H +1H +12.859  +12.859
Net: 41H → 4He   +26.729 –0.526

Step [A1] involves the collision of two protons (1H) – the most abundant nuclei in most stars.  
The principal fusion product  is a deuterium nucleus (2H or 2D), which consists of one proton 
and one neutron, rather than the two protons that collided to produce it.  This is because one of 
the protons is transformed into a neutron, creating a positron (e+) to carry the former proton's 
charge and a neutrino (v), which conserves the lepton number for the reaction:  –1 (for the 
positron) and  +1 (for the neutrino) totals 0 for the reaction.

The positron is the anti-particle of the electron; when the two collide, they annihilate each 
other, turning themselves completely into energy (included in ΔE).  The neutrino is a nearly 
massless particle that moves at nearly  the speed of light while hardly ever interacting with 
matter.  Its main role here is to carry  away some of the energy released by the reaction – the 
amount shown in the neutrino loss column.

In step [A2], the deuterium reacts with a proton to produce a helium-3 nucleus and a gamma-
ray photon – another form of energy.  Steps [A1] and [A2] are then repeated, producing a second 
helium-3 and paving the way for the production of helium-4 in step [A3], where more energy is 
released in the form of increased kinetic energy of the particles.  This reaction also generates two 
protons, partly replacing the six protons required to make the two helium-3 nuclei.  Thus, the net 
reaction is as expected.  This sequence of steps is known as pp I.

The pp I sequence requires a temperature sufficient  to allow the colliding nuclei to overcome 
their repulsive Coulomb forces – about 10 to 15 million K.  At higher temperatures, there are 
other options for completing the reaction:

Table 10.2:  The proton-proton chain – pp II
  ΔE (MeV) v loss (MeV)
[A1] 1H +1H → 2D +e++v +1.442 –0.263
[A2] 2D +1H → 3He + γ +5.493 
[A3'] 3He +4He → 7Be + γ +1.586 
[A4] 7Be +e– → 7Li +v +0.861 –0.80  
[A5] 7Li +1H → 4He + 4He +17.347
Net: 41H → 4He +26.729 –1.063

The pp II sequence requires the presence of helium-4 nuclei and is dominant at temperatures 
of 14 to 23 million K.  At temperatures higher than 23 million K, the pp III sequence can be 
performed efficiently:
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Table 10.3:  The proton-proton chain – pp III
  ΔE (MeV) v loss (MeV)
[A1] 1H +1H → 2D +e++v +1.442 –0.263
[A2] 2D +1H → 3He + γ +5.493 
[A3'] 3He +4He → 7Be + γ +1.586 
[A4'] 7Be +1H → 8B + γ +0.135
[A5'] 8B → 8Be + e+ +v +17.98   –7.2    
[A6] 8Be → 4He + 4He +0.095
Net: 41H → 4He +26.73   –7.46  

Of course in a real star, these reactions all compete at the same time, with the dominant 
sequence determined by the conditions in the core.  For example, the Standard Solar Model 
(Bahcall 1989) produces energy  as follows:  85% pp I (26.2 MeV), 15% pp II (25.7 MeV), and 
0.02% pp III (19.1 MeV) – where the energies have been adjusted for neutrino losses.

The individual reactions in the pp chain proceed at different rates, depending on the 
probability  of the reaction, the concentration of the reactants, and the temperature.  It is common 
to indicate these rates by  giving reaction lifetimes τ, which may be considered as the average 
time a particle waits before participating in the reaction.  The following lifetimes are found for 
the pp chain reactions, assuming X =Y =0.5, ρ =100, and T6 =15 (typical solar values):

Table 10.4:  Lifetimes for individual reaction in the pp chain (Clayton 1968)
Reaction   τ Reaction   τ Reaction   τ         
[A1]  7.9 billion years [A3']  970,000 years [A4']  66 years
[A2]  1.4 seconds [A4]  140 days [A5'] & [A6]  0.95 seconds
[A3]  240,000 years [A5]  9.5 minutes 

Reactions with very  short lifetimes will happen very quickly, given a sufficient supply of 
reactants; those with longer lifetimes will delay the overall process.  Thus the controlling 
reaction in a sequence is the one with the longest lifetime, as the cycle cannot proceed any faster 
than this reaction can happen.  For the pp chain, the controlling reaction is [A1] because this 
reaction has the longest lifetime, and it is included in each of the three pp cycles.

From the lifetime for reaction [A1], we see that the probability of a given proton reacting in 
any one year is about one in 8 billion; for a collection of 8 billion protons, on average about one 
of them should react each year.  We may use this idea to estimate the luminosity of the Sun, 
based on the number of protons contained in its core and the rate at which they react.

The number of core protons np should be the mass of hydrogen in the core divided by the 
mass of one hydrogen atom:

Eq. 10.58 

� 

np = Msun fcX
mH
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The probability  of a reaction is 1/τ , the energy  released by each complete cycle is ≈ 26.7 
MeV, and four protons react in each cycle.  Combining these, we can write an expression for the 
luminosity:

Eq. 10.59 
 
L ≈ #protons

protons rxn
⋅ ΔE
rxn

⋅probability =
np
4
⋅ ΔE 1

τ
=
M fcX
4mH

⋅ ΔE
τ

Inserting solar values and a few conversion factors, we obtain the luminosity estimate:

Eq. 10.60 L ≈
2e33( ) 0.1( ) 0.75( )
4 1.67e− 24( ) ⋅

26.7e6 eV( )
7.9e9 yrs( ) ⋅

1.6e−12 ergs/eV( )
3.16e7 s/yr( ) ≈ 3.8 ×1033 ergs/s( )

As this is in good agreement with the observed value, it would appear that our figure for the 
lifetime of the controlling reaction is quite reasonable.  The pp chain is the principal source of 
energy for the Sun and cooler main sequence stars.

The CNO Cycle
Hotter stars are capable of changing hydrogen into helium by a different route, if the 

appropriate catalysts are present.  This collection of reactions is known as the CNO cycle:

Table 10.5:  The CNO cycle – option 1
  ΔE (MeV) v loss (MeV)
[B1] 12C +1H →13N + γ +1.944
[B2] 13N → 13C + e+ +v +2.221 –0.710 
[B3] 13C +1H →14N + γ +7.550 
[B4] 14N +1H →15O + γ +7.293
[B5] 15O → 15N + e+ +v  +2.761 –1.000
[B6] 15N +1H →12C +4He +4.965
Net: 41H → 4He +26.734 –1.710

While the first three reactions may  occur at temperatures less than 10 million K, the last  three 
require at least 10 million K.  An alternate cycle is provide by  a branch at the sixth reaction, as 
shown in Table 10.6:

Table 10.6:  The CNO cycle – option 2
  ΔE (MeV) v loss (MeV)
[B4] 14N +1H →15O + γ +7.293
[B5] 15O → 15N + e+ +v  +2.761 –1.000
[B6'] 15N +1H →16O + γ +12.126
[B7] 16O +1H →17F + γ +0.601
[B8] 17F → 17O + e+ +v +2.762  –0.94  
[B9] 17O +1H →14N +4He +1.193 
Net: 41H → 4He +26.736 –1.94  
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Reaction [B6'] requires temperatures in excess of 17 million K; only three of these reactions 
occur per 1000 [B6] reactions.  The controlling reaction for CNO is reaction [B4]; the actual 
lifetimes depend on conditions in the core.

CNO requires higher temperatures than pp, due to the larger, more positively  charged nuclei 
involved in the CNO reactions.  Note that carbon-12 (in option 1) and nitrogen-14 (in option 2) 
both serve as catalysts for the production of helium-4, as does helium-4 in pp II and pp III.

Together the pp chain and CNO cycle comprise the means by which hydrogen is converted to 
helium in stars.  Other reactions are possible, given heavier raw materials and higher 
temperatures, but they do not involve hydrogen fusion.

The Triple-Alpha Process

  The most abundant nuclei in the universe are 1H and 4He, occurring in a roughly 10:1 ratio.  
This abundance can be achieved from an initial universe of pure hydrogen and 13 billion years or 
so of hydrogen fusion, although this is not considered to be likely.

The next most abundant nuclei are 12C and 16O.  How can fusion produce these?  And what 
about the nuclei in between 4He and 12C ?

We cannot simply add protons one at a time to 4He because there are no stable nuclei with 
five nucleons.  And there are never enough 2D around to bridge the gap  because reaction [A2] 
proceeds so quickly.  Similarly, adding two 4He together is a problem because there are no stable 
nuclei with eight nucleons.  No clever chains of light particles have been found that can hurdle 
these gaps, nor are three- or four-body collisions apt to be probable.  It would seem that metals 
are nearly impossible to make!

But consider the reaction 4He +4He → 8Be (the reverse of [A6]).  This reaction is 
endothermic and requires a temperature of 100 million K; in addition, the 8Be product is 
unstable.  However, the lifetime of the 8Be nucleus is about  2.6 ×10–16 seconds, but as short as 
this seems, it is still much longer than the time required for two 4He nuclei to scatter past each 
other – which is on the order of 10–20 seconds.  This means that the temporary formation of a 8Be 
nucleus significantly  increases the probability that three 4He nuclei will be in sufficiently close 
proximity for the reaction sequence to continue.  

Even though the 8Be nucleus is unstable, a small, non-zero equilibrium concentration of 8Be 
will be established in the helium gas.  For example, at T = 100 million and  ρ =105, there will be 
about one 8Be nucleus per billion 4He nuclei, which is enough to allow the sequence 8Be +4He → 
12C* → 12C +γ to proceed (where 12C* is an excited state).  This relatively short  sequence – 
shown in Table 10.7 – is known as the triple-alpha process (3α):
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Table 10.7:  The triple-alpha process (3α)
  ΔE (MeV)
[C1] 4He +4He → 8Be –0.092
[C2] 8Be +4He → 12C* –0.286
[C3] 12C* → 12C +γ +7.656
Net: 3 4He →12C +7.274

From here, alpha capture may continue:
[C4] 12C +4He →16O +γ +7.161

These helium-burning reactions are believed to result in roughly  equal amounts of 12C and 
16O nuclei produced in stars.  The combined net reaction can be expressed as follows:

Net: 7 4He →12C +16O +21.709
We now calculate the energy released per reacting particle.  For triple-alpha/alpha capture, 

we have 21.709 ÷ 7 ≈ 3.1 MeV per reacting particle.  This is compared with hydrogen burning, 
which releases 26.73 ÷ 4 ≈ 6.7 MeV per reacting particle.  Hydrogen burning is clearly more 
efficient than helium burning at generating energy.  Essentially  all visible stars derive the bulk of 
their energy from hydrogen burning and/or helium burning; reactions involving heavier fuels will 
be considered later during discussion of stellar evolution.

Binding Energy
To determine the nuclear energy released, we must examine the binding energy, which holds 

protons and neutrons together in the nucleus.  This quantity can be defined in terms of the mass 
defect ΔM:

Eq. 10.61 ΔM ≡ Nmn + Zmp – Mnuc = (A – Z)mn + Zmp – Mnuc

Here Z is the number of protons, N is the number of neutrons, and A (= Z + N) is the number 
of nucleons; this means the mass defect is the difference between the sum of the masses of the 
nucleons and the mass of the nucleus (Mnuc).  (Note:  ΔM is not the same as the Δm used earlier 
for the mass conversion in a reaction, but the mass defect can be used to calculate Δm.  Also note 
that the mass of the nucleus is not the same as the atomic mass – which contains electron 
masses.)  

Given the mass defect, the binding energy EB is easily calculated:

Eq. 10.62 EB  ≡ ΔM c2

The greater the binding energy, the more energy  will be released when the nucleus is formed 
from its constituent  nucleons.  However, most nuclei are not formed from a collection of protons 
and neutrons, but rather from other nuclei; thus it will be more useful to compare binding 
energies of different nuclei with each other.  In general it will be true that larger nuclei have 
greater binding energies, simply because they  contain more nucleons.  But we will gain the most 
insight by considering the binding energy per nucleon, also known as the binding fraction fB .  
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Eq. 10.63 

� 

fB = EB

A

The binding fraction and the mass defect for a range of nuclei are tabulated in Table 10.8, 
along with the quantities used to calculate them.  (Atomic masses from http://
www.chem.ualberta.ca/~massspec/atomic_mass_abund.pdf)

Table 10.8:  Mass defects and binding fractions for representative isotopes
Isotope A Z Matom (amu) Mnuc (amu) ΔM (MeV) fB (MeV)
1H 1 1 1.007825 1.007276 0.0000 0.0000
2D 2 1 2.014102 2.013553 2.2244 1.1122
3He 3 2 3.016029 3.014932 7.7184 2.5728
4He 4 2 4.002603 4.001506 28.2959 7.0740
7Li 7 3 7.016004 7.014358 39.2446 5.6064
9Be 9 4 9.012182 9.009988 58.1651 6.4628
12C 12 6 12.000000 11.996709 92.1618 7.6801
14N 14 7 14.003074 13.999234 104.6587 7.4756
16O 16 8 15.994915 15.990526 127.6190 7.9762
18O 18 8 17.999160 17.994771 139.8075 7.7671
20Ne 20 10 19.992440 19.986954 160.6451 8.0323
24Mg 24 12 23.985042 23.978459 198.2569 8.2607
28Si 28 14 27.976927 27.969247 236.5366 8.4477
56Fe 56 26 55.934942 55.920679 492.2542 8.7903
89Y 89 39 88.905848 88.884453 775.5382 8.7139
107Ag 107 47 106.905093 106.879310 915.2665 8.5539
138Ba 138 56 137.905241 137.874521 1158.2985 8.3935
169Tm 169 69 168.934211 168.896359 1371.3536 8.1145
197Au 197 79 196.966552 196.923214 1559.4017 7.9157
238U 238 92 238.050783 238.000314 1801.6947 7.5701

It is instructive to consider a plot  of the binding fraction over the range of values of A, as 
shown in Figure 10.2.  For the lighter nuclei, the binding fraction rises steeply with A to a peak at 
56Fe, after which it declines gradually.  Fusion of these lighter elements produces heavier 
isotopes with higher binding fractions and releases energy.  Fusion of elements heavier than iron 
produces still heavier isotopes, but  with lower binding fractions; such reactions absorb energy, 
rather than releasing it.  In general, nuclear reactions that result in products with greater binding 
fractions will be exothermic; those that reduce the binding fraction will be endothermic.  Thus 
fusion is normally exothermic for isotopes up  to 56Fe, but it is endothermic for isotopes beyond; 
the reverse is true for fission.  This fact plays a key role in nucleosynthesis and stellar evolution.
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Figure 10.2:  Binding fraction vs. nucleon number
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Reaction Rates
To achieve fusion, nuclei must get very  close together – to within about one nuclear radius:   

ro ≈ 1.1 ×10–13 A1/3 cm.  The nuclei are repelled by the Coulomb potential, where the potential 
energy of two nuclei at a distance r > ro is as follows:

Eq. 10.64 

� 

E = Q1Q2

r
= Z1Z2e

2

r

Within ro the nuclei are held together by the strong nuclear force.  The potential function is 
approximately as shown in Figure 10.3.  The height of the potential barrier at ro depends on the 
nuclei involved:

Eq. 10.65 

� 

E(ro ) ≈ 1.3
Z1Z2
A
1
3
MeV

For the pp chain's controlling reaction, E(ro) ≈ 1.3 MeV = 3/2 kT ⇒ T ≈ 1010.  This would 
seem to imply that temperatures on the order of 10 billion K are required for hydrogen fusion; 
but estimates of the central temperature for the Sun amount to only about 10 million K.  What 
could explain this difference?

The simplest solution is that only some of the nuclei participate in the reactions; only those in 
the high velocity tail of the Maxwellian distribution can have sufficient energy to overcome the 
Coulomb repulsion.  (The above calculation equated the potential barrier height to the average 
kinetic energy of the particles.)  

An additional factor is tunneling – a purely quantum mechanical phenomenon with no 
classical analog.  Classically, only those nuclei with kinetic energies greater than the barrier 
height will be able to approach closely enough to react.  But in quantum mechanical treatments, 
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there is a finite probability that an approaching particle may tunnel through the potential barrier, 
emerging in the potential well and reacting.  (Note the dashed line labeled Eo in Figure 10.3.)  
The tunneling probability  increases with the energy of the particle (because the barrier narrows at 

higher energies):  probability 

� 

≈ e
− b

E , where b = 0.99 Zj Zk µ .

Figure 10.3:  Coulomb barrier for colliding nuclei
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But the number of available nuclei decreases for higher energies:  probability ≈ e–E/kT .  Thus, 
these two factors work against each other; if either one becomes too small, the reaction will not 
proceed.  The product of these two probabilities yields the Gamow peak, as shown in Figure 
10.4.  

Figure 10.4:  The Gamow peak
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The optimal reaction energy is Eo , and the reaction rate is proportional to the area under the 
Gamow peak.  Most of the reactions will be produced by particles with energies around Eo , 
which is generally several times kT.
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Eq. 10.66 
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Eo

kT
= 6.574 W

T7
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1
3

 where 

� 

W = Z j
2Zk

2 AjAk
Aj + Ak

  (Ai  are nucleon numbers)

For the pp chain's controlling reaction, at T7 =1, W = 1/2 , and  Eo /kT = 5.22.

We are now ready to formulate an equation for the reaction rate ε that appeared in the 
equation of thermal equilibrium.  We may assume that it  will involve the density, temperature, 
and composition, with factors determined as follows:

Eq. 10.67 ε ergs
g-s

⎛
⎝⎜

⎞
⎠⎟
= ergs

rxn
⎛
⎝⎜
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rxns
cc-s
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⎝⎜

⎞
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g
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⎝⎜

⎞
⎠⎟

The first  factor is determined from the binding energy, and the third factor is the inverse of 
the density.  The second factor is further broken down:

Eq. 10.68 rxns
cc-s

⎛
⎝⎜

⎞
⎠⎟ =

collisions
cc-s

⎛
⎝⎜

⎞
⎠⎟ ⋅

barrier penetrations
collision

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

The collision rate is proportional to the concentrations of the colliding species (Ni), which in 
turn are proportional to ρXi .  So for an i-j collision, the collision rate is proportional to the 
product (ρXi)(ρXj).  The 1/ρ factor from Equation 10.67 cancels one of these densities and gives 
the following structure for the reaction rate:

Eq. 10.69 ε ∝ ρ Xi Xj  f (T)

The positively charged nuclei repel each other, but this repulsion is reduced by intervening 
electrons, which screen the nuclei from each other.  Because the nuclei perceive a reduced 
positive charge, the reaction rate is enhanced; this increase is modeled by the electron shielding 
(or electron screening) factor:

Eq. 10.70 

� 

fi, j = exp 0.188ZiZ j ρζ T6
3( ) ≈ 1+ 0.188ZiZ j ρζ T6

3    (using ex ≈ 1 + x + ...)

Here Zi and Zj are nuclear charges and 

� 

ζ = Z 2 + Z( ) XZ
mZ

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

Z
∑ ≈ 1

2
X + 3( )  for low metal 

fractions.  (Z is the atomic number, XZ is the mass fraction of element Z, and X is the mass 
fraction of hydrogen.)

To calculate the reaction rate for a sequence, we need only consider the controlling reaction:
• pp – [A1]:  1H +1H →
• CNO – [B4]:  14N +1H →
The appropriate screening functions are then as follows:

• pp: 

� 

f1,1 ≈ 1+ 0.25 ρ T6
3

• CNO: 

� 

f14,1 ≈ 1+1.75 ρ T6
3
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• 3α: 

� 

f3α ≈ 1+ 0.0024 ρ T8
3

A correction must also be made for approximating the Gamow peak as a gaussian function:

• pp: g1,1 = 1 + 0.0123 T6
1/3 + 0.0109T6

2/3 + 0.0009T6

• CNO: g14,1 = 1 + 0.0027 T6
1/3 – 0.00778T6

2/3 – 0.000149T6

• 3α: (no correction)
In general, g ≈ f ≈ 1.
For the pp chain, another factor is needed to account for the different endings and efficiencies 

in pp I, pp  II, and pp III, which depend on the abundance of helium-4.  This factor ψ ranges from 
1 to 2 (see Novotny (1973) Figure 10-7), reflecting the number of 4He nuclei produced per pp 
reaction [A1].  The reaction rates are then as follows:

Eq. 10.71 ε pp = 2.38 ×10
6ρX1

2 f1,1g1,1ψ ppT6
−2
3e−33.80/T6

1
3 ergs/(g-s) (Kippenhahn & Weigert 1990)

Eq. 10.72 

� 

εCNO = 7.94 ×1027ρX1XCNO f14,1g14,1T6
−2
3e−152.313/T6

1
3  ergs/(g-s)        (Cox & Giuli 1968)

Here XCNO = XC + XN + XO , as these three nuclei are interconvertible by this process.

Eq. 10.73 

� 

ε3α = 5.09×1011ρ2X4
3 f3αT8

−3e−44.027/T8  ergs/(g-s)         (Kippenhahn & Weigert 1990)

The temperature dependence is a bit  obscure in these expressions; it is often useful to rewrite 
the rates in a different form that will show the temperature dependence better:

Eq. 10.74 εpp = ρX1
2 f1,1 g1,1 ψpp εo(To) (T/To)

v

Eq. 10.75 εCNO = ρX1XCNO f14,1 g14,1 εo(To) (T/To)
v

Eq. 10.76 ε3α = ρ2X4
3 f3α εo(To) (T/To)

v

The function εo(To) is tabulated for each reaction at selected values of To .  One chooses the 

value of To closest to the target temperature and adjusts εo(To) using the factor (T / To)
v.  The 

exponent v – which relates to neither neutrinos nor frequency – is calculated as follows:

Eq. 10.77 

� 

ν = τ o − 2
3

 where 

� 

τ o = 3Eo

kTo
=19.721 W

T7

⎛ 
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⎟ 

1
3

 (see Equation 10.66)

The Gamow peak energy Eo is given by the following:

Eq. 10.78 
 
Eo =

m
2
πZiZ je

2kT


⎡

⎣
⎢

⎤

⎦
⎥

2
3

Cox & Giuli (1968) provide tables of To , εo , v, and g1,1 for the pp chain (p494), To , εo , v, and 
g14,1 for the CNO cycle (p486), and To , εo , and v for the 3α process (p505).  The most notable 
point about this data is the very  steep temperature dependence for both CNO and 3α.  At a To 
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value of 15 million K, v  ≈ 4 for pp and v ≈ 20 for CNO, while at To = 100 million, v ≈ 40 for 3α.  
These differences will have interesting structural results for the stars (see Chapter 12).

We now present some sample calculations of the reaction rates.  To begin, we will estimate 
the value of  εpp at T6 = 12, ρ = 80, and X1 = 0.7.  First we will use Equation 10.74, evaluated 
around the tabulated value of To = 10, for which εo(To) = 0.0679, v = 4.60, and g = 1.07.  Further 
assuming that f ≈ ψ ≈ 1, we arrive at our estimate:

Eq. 10.79 εpp = 80 (0.7)2 (1) (1.07) (1) (0.0679) (12/10) 4.60 = 6.59 ergs/(g-s)

We can obtain a more exact result by calculating each of the correction factors and using 
Equation 10.71.   ψpp= 1 (from Novotny (1973) Figure 10-7).

Eq. 10.80 

� 

f1,1 =1+ 0.25 80 12( )−32 =1.054  

Eq. 10.81 g1,1 = 1 + 0.0123 ×(12)1/3 + 0.0109 ×(12)2/3 + 0.0009 ×(12) = 1.096

Eq. 10.82 εpp = 2.38 ×106 (80) (0.7)2 (1.054) (1.096) (1) (12)–2/3 e–33.80/(12)1/3 = 7.97 ergs/(g-s)

The approximation gives a reasonable value compared to the more precise version.
We now compare the rates for pp and CNO at different temperatures.  For simplicity, we will 

use the approximations (Equations. 10.74-5), along with g = f = ψ = 1, X1 = 0.7, and XCNO ≈ 0.02:

Eq. 10.83 
ε pp
εCNO

≈ X1
XCNO

⋅
εopp
εoCNO

= 35
εopp
εoCNO

Results are shown in Table 10.9; from these it is clear that the pp chain is the dominant 
hydrogen-burning mechanism at low temperatures while the CNO cycle dominates at high 
temperatures.  Both reaction rates increase with temperature, but the CNO cycle has a much 
stronger temperature dependence than the pp chain:  vpp ≈ 4 and vCNO ≈ 20.

Table 10.9:  Rate comparison – pp vs. CNO (data from Cox & Giuli 1968)

To εopp εoCNO εopp /εoCNO

10 0.0679 0.000335 7094

15 0.377 1.90 6.94

20 1.09 451 0.0846

25 2.29 21600 0.00371

Neutrinos
Some of the reactions in the hydrogen-burning sequences produce neutrinos – nearly 

massless particles that efficiently carry energy away from the reaction.  The reason for this 
efficiency lies in the extremely small cross section for neutrino interactions with matter:
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Eq. 10.84 σ ≈ E
mec

2

⎛
⎝⎜

⎞
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2

⋅10−44 cm2

Because mec
2 = 0.511 MeV, for E ≈ 1 MeV, σ ≈ 10–44, which is quite small compared to the 

Thomson cross section (σT ≈ 10–25).  We may calculate a mean free path for the neutrino:

Eq. 10.85 
  

� 

 = 1
Nσ

= µ
ρ NAσ

   where N =ρNA /µ  is the number density of target nuclei

Letting µ ≈ 1, ρ ≈ 1, and NA = 6 ×1023, we find an extraordinary value for the mean free path:

Eq. 10.86 
 
 ≈ 1
1⋅10−44 ⋅6 ×1023

≈1.7 ×1020 cm ≈ 50pc !

Even at a density of 1 million g/cc – such as found in a white dwarf – the mean free path is 
still about 11 AUs.  Neutrinos are difficult to confine, unless their energies are much higher, as 
may be found in supernovae.  They are also extremely difficult to detect, and even though they 
emerge directly from the core of the star, bearing information about the processes occurring 
there, they have been rather slow to divulge the secrets of fusion they carry.

The Equations of Stellar Structure
We now have a sufficient supply of equations to construct interior models for most stars.  

These are generally known as the equations of stellar structure:

Eq. 9.2  [1]  

� 

dMr

dr
= 4πρ r2   – the equation of mass continuity

Eq. 9.3  [2]  

� 

dP
dr

= −GMrρ(r)
r2

  – the equation of hydrostatic equilibrium

Eq. 9.4  [3]  Pg =
ρℜT
µ

    (with P = Pg + Pr)  – the equation of state*

Eq. 10.11 [4]  

� 

dT
dr rad

= − 3
4ac

κ ρ
T 3

Lr
4πr2

  – the radiative temperature gradient

Eq. 10.41 [5]  dT
dr ad

= − GMrµ
n +1( )ℜr2   (with n = 1.5)  – the adiabatic temperature gradient

Eq. 10.43 [6]  

� 

dLr
dr

= 4πρ r2ε   – the equation of thermal equilibrium

In addition to these six equations, we will also need relations for appropriate energy 
generation rates (ε) and the mean opacity (

� 

κ ); the initial composition (Xi) must also be specified.  
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The desired solution will be a set of equations (or tabulated values) giving the major variables as 
functions of radius:  Mr(r), ρ(r), P(r), T(r), and Lr(r).

Most of the stellar structure equations are differential equations, which of course require 
boundary conditions to achieve a solution.  What boundaries are available in a star?

The surface of a star provides an obvious boundary.  Here we find r =R, Mr =M, and Lr =L.  
In addition, we may assign surface values to the gas properties, but these values approach 0 
relative to their much higher interior values:  T = Ts → 0, P = Ps → 0, and ρ = ρs → 0.

We may solve the stellar structure equations by choosing the star's mass (M) and radius (R) 
and integrating inwards from the surface to the center.  The 'correct' model will have Mr → 0 as  
r → 0, which will not be true for just any combination of M and R.  We must vary R until we find 
the best radius for a given mass.

Another boundary can be found at the center of the star, where r = 0, Mr = 0, and Lr = 0, and 
the gas properties take on their central values:  T = Tc , P = Pc , and ρ = ρc .  Then we could solve 
the stellar structure equations by choosing two central values (Tc and ρc) and integrating 
outwards towards the surface.  The 'correct' model will then have T → 0, P → 0, and ρ → 0 at 
the same radius (= R).  We would vary one of our two central values until this condition is met.

In principle, any two parameters (e.g. Tc and Pc , or R and X1) may be freely chosen, and then 
the model is uniquely  determined.  It does not matter whether the integration proceeds inward or 
outward.  In practice it is normally easiest  to choose the mass and the composition as the input 
parameters.

This leads to the Vogt-Russell theorem:  If the pressure, opacity, and energy generation rates 
are functions of the local temperature and composition only, then the structure of a star is 
uniquely determined by the mass and chemical composition of the star (Hopkins 1980).  We 
know that  stars form over a range of different masses, and the process of nuclear fusion serves to 
alter the composition of stars and the matter from which they form, given sufficient time.  Thus 
we should be able to use our models to account for the variety of stellar species that are 
observed.

To illustrate the basic idea of the Vogt-Russell theorem, we consider the stellar structure 
equations and their accompanying relations.  (Only one temperature gradient is used here 
because only one of the two will be used at a given location.)

[1] M = f (ρ,r)  (mass continuity)
[2] P = f (M,ρ,r)  (hydrostatic equilibrium)
[3] P = f (T,ρ,X)  (equation of state)
[4] T = f (κ ,ρ,L,r)  (radiative temperature gradient)
[6] L = f (ρ,r,ε)  (thermal equilibrium)
[7] ε = f (T,ρ,X)  (energy generation rate)
[8] 

� 

κ  = f (T,ρ,X)  (mean opacity)

We now combine  [4] and [8] to eliminate 

� 

κ  and form [9] T = f (X,ρ,L,r).
Then combine [6] and [7] to eliminate ε and form [10] L = f (X,ρ,T,r).
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Then combine [9] and [10] to eliminate L and form [11] T = f (X,ρ,r).
Then combine [3] and [11] to eliminate T and form [12] P = f (X,ρ,r).
Then combine [2] and [12] to eliminate P and form [13] ρ = f (X,M,r).
Then combine [1] and [13] to eliminate ρ and form [14] r = f (X,M).
Thus, for a given mass and chemical composition, the properties of a star are determined.  In 

the final chapters of the book, we will investigate the formation of stars of different masses and 
compositions and determine how these parameters change over the course of stellar evolution.  
But first, we must discuss an alternate equation of state.
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CHAPTER 11:  Degeneracy
Before tackling the subject of stellar evolution, we need to load one more piece of basic 

physics into our bag of tricks.  This is the topic of degeneracy, which will lead us to an alternate 
equation of state (in place of the ideal gas law). 

Phase Space
Gas particles have both position and momentum.  In general, we need three coordinates to 

specify  the position (x, y, z) and three more to specify the momentum (px , py , pz)  of a given 
particle.  Together the three position coordinates and the three momentum coordinates comprise 
a 6-dimensional phase space.

Each coordinate has an uncertainty associated with it, meaning that we can localize a 
particle's position to within a box in position space that has dimensions Δx ×Δy ×Δz, and we can 
identify a particle's momentum to within a 'box' in momentum space that  has dimensions 
Δpx×Δpy×Δpz .  The 6-dimensional volume of phase space (a phase space cell) occupied by the 
particle then has a volume ∆V given by the following:

Eq. 11.1 ΔV = ΔxΔyΔz ΔpxΔpyΔpz

Now although the six coordinates of phase space are independent of each other, their 
uncertainties are not.  Each directional pair of position and momentum coordinates is linked by 
the Heisenberg uncertainty principle:

Eq. 11.2 Δx Δpx ≥ h   Δy Δpy ≥ h   ΔzΔpz ≥ h   (or ħ, h/2, etc.)

Combining these equations, we find a lower limit (∆Vmin) on the volume of a phase space 
cell:

Eq. 11.3 ΔV = ΔxΔyΔz ΔpxΔpyΔpz ≥ h3 = ∆Vmin

The minimum volume of a phase space cell is on the order of h3, and no more than two 
electrons may occupy  one cell, as they  must have opposite spins due to the Pauli exclusion 
principle  (see Chapter 3).  The maximum number of electrons that can fit  into a given volume of 
phase space (V) is then double the maximum number of cells:  2V/∆Vmin = 2V/h3.
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This places a limit on how closely packed electrons may be, whether they are in atomic 
bound states or existing as free particles in the gas; and this in turn places limits on the density of 
the gas.  But because phase space is involved, there will also be limits on the electron momenta, 
rather than just their positions.  And electron momenta depend on the temperature of the gas.

The amount of physical space available to the free electrons depends on the density of the gas 
while the amount of momentum space available to these electrons depends on the temperature of 
the gas.  Degeneracy refers to the degree to which the available cells are filled:  the greater 
proportion of cells that are filled, the greater will be the degeneracy of the gas.  All gases are 
degenerate to some degree, but those with higher densities and/or lower temperatures will be 
more degenerate.

A 2-Dimensional Example
As a simple example of degeneracy, consider only the x-px pair of coordinates for a collection 

of 21 electron pairs.  Suppose that the 2D phase space available to these electrons is represented 
by an x-px array; the available position space is 8 cells wide, as shown in Figure 11.1, while the 
momentum space is determined by the energy content of the gas.

In Figure 11.1a, the electron pairs are distributed throughout the cells in the array, showing 
no particular preference for position, but with a decreasing abundance of higher momentum 
cells, as we might find in an ideal gas.  The average momentum of an electron is found to be 
2.67.  

Figure 11.1:  2-Dimensional degeneracy
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We then compress the gas, forcing the dimension of the available position space to reduce 
from 8 cells to 3.  The electrons must still occupy cells – they cannot disappear – but with a 
smaller position space available to them, a greater fraction of the electrons must occupy higher 
momentum cells than they did before.  By filling all the cells from the bottom momentum up, as 
in Figure 11.1b, we find that the average momentum is now 4.0.  Increasing the density has 
caused the average electron momentum to increase, which in turn increases the electron pressure.

If the gas were to be further compressed, the position space cells would be reduced even 
more, and the electrons would be squeezed into still higher momentum states, where they  would 
exert even greater pressure.  This of course requires energy, which may or may not be supplied 
along with the attempted compression.  That is, as a gas is compressed, it becomes more 
degenerate and exerts an increasingly higher pressure that counters the compression forces 
causing the degeneracy, possibly resulting in an equilibrium condition.  The pressure of 
degeneracy thus can play a key role in the structure of a star – if the right conditions are met.
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Ion Degeneracy
So far our discussion of degeneracy has involved only the electrons within a gas, but there 

will be ions present as well, and in comparable numbers.  What can be said about ion 
degeneracy?  

In a monatomic gas of temperature T the particles have an average kinetic energy given by 
1
2 mv

2 = 3
2 kT .  As this relation applies to both ions and electrons, we may use it to link masses 

and velocities for these two types of particles.  The average kinetic energy of an ion will be equal 
to the average kinetic energy of an electron:     

Eq. 11.4 1/2 meve
2 = 1/2 mivi

2     ⇒     vi
ve

= me

mi

The x-momenta of the ion and electron are then related as follows:

Eq. 11.5 
pix
pex

=
mivix
mevex

= mi

me

me

mi

= mi

me

The ratio of the products of the momenta in all three directions is the cube of this value:

Eq. 11.6 
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3
2

≈ 1836Ai( )32   where Ai is the number of nucleons

This ratio – which represents the ratio of the momentum space of the ions relative to the 
electrons – is about 79,000 for hydrogen and 630,000 for helium.  This means that at a given 
temperature and density, the ions have a much larger momentum space – and thus a much larger 
phase space – available to them than do the electrons.  As the minimum size of the cells is fixed 
at h3, the ions will have a much greater number of minimum cells available and thus will be far 
less degenerate than the electrons.  Therefore we will consider only electron degeneracy.

Distribution Functions
Electrons are fermions – particles with half-integer spin – and they  obey the Pauli exclusion 

principle:  no two identical fermions may be in the same quantum mechanical state.  Other 
examples of fermions include protons, neutrons, and positrons.  The number of fermions in an 
energy state E' is given by the Fermi-Dirac distribution law:

Eq. 11.7 

� 

N ≈ 1
eE ' kT +1

Fermions are different from bosons – particles with integer spin – which do not obey the 
Pauli exclusion principle.  Examples include photons, alpha particles, deuterons, etc.  The 
number of bosons in an energy state E' is given by the Bose-Einstein distribution law:

Eq. 11.8 

� 

N ≈ 1
eE ' kT −1

    (Note the resemblance to the Planck function.)
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Both of these types of particles are indistinguishable; on the other hand, distinguishable 
particles – such as those found in an ideal gas – have a distribution given by  the Boltzmann 
equation:

Eq. 11.9 

� 

N ≈ 1
eE kT + 0

= e−E kT

The appropriate distribution function for electrons with momenta in the range p → p + dp is 
given by the following: 

Eq. 11.10 

� 

Ne(p)dp = 2
h3
4π p2dpP(p)  

� 

= 8π
h3

p2dpP(p)

Here Ne(p) is the number density of electrons with momentum p, h3 is the minimum cell 

volume, 4πp2dp is the volume of momentum space, 2 is for the spin, and P (p) is the occupation 
index for a fermi gas:

Eq. 11.11 P(p)

� 

= 1

e
α+E p( )

kT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

+1
    Note that E > 0.

The parameter α – which has nothing to do with polytropes or alpha particles – will be 
determined later.
P (p) has a maximum value of 1; this is attained as the exponential term approaches zero – 

which reflects the Pauli exclusion principle.  When P(p) = 1, all available electron states are 
occupied, from p = 0 to p = po (the Fermi momentum).  The electrons are then at maximum 
density Ne(po)max , given by the following:

Eq. 11.12 

� 

Ne(po )max = 8π
h3

po
2

If more electrons are added to the volume, they  must occupy higher momentum states, at p > 
po because all of the lower states are filled.  These higher momentum states will make a large 
contribution to the electron pressure.  Addition of electrons to the volume (by compression) 
requires creation of higher momentum states to contain these electrons.  But because these states 
will need energy in order to form, the degenerate electron gas must absorb energy in order to 
contract.  If no such energy source is available, the contraction cannot occur.

The Degeneracy Parameter α
We now investigate the role played by the parameter α.  (Note that  the degeneracy parameter 

α is used in Clayton (1968), but both Novotny  (1973) and Kippenhahn & Weigert (1990) use ψ 
(= – α) instead.)  Its value is determined from normalization considerations, which require the 
following condition:

Eq. 11.13 

� 

Ne = Ne p( )dp
0

∞∫ = Ne α,T( )
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If α is large and positive, then P (p) <<1 for all values of E, and P(p) → e–E’/kT ; that  is, the 
electron distribution function resembles a Maxwellian distribution.  This is the non-degenerate 
case.  

As Ne increases at constant temperature, P(p) increases, which means that e(α+E)/kT decreases; 
this in turn implies that α decreases, becoming negative.  As α becomes large and negative (α → 
– ∞), the occupation index is modified as follows:

Eq. 11.14 P(p)

� 

= 1

e α+E kT( ) +1
→ 1

e− α e
E
kT +1

The occupation index then depends on how the energy (E) of the electron relates to this large, 
negative value of α:  

If 

� 

E
kT

< α  , then P(p)

� 

→ 1
0+1

=1. 

If 

� 

E
kT

> α  , then P(p)

� 

→ 1
∞+1

= 0.  

This implies that at lower energies, the phase space cells will be filled to their maximum 
capacity with electrons, while at  higher energies, the cells will be empty.  The boundary between 
these two energy regions comes at | α | = Ef / kT, where Ef  = E(po) is the Fermi energy, and po is 
known as the Fermi momentum.   A plot of the occupation index for this situation is shown in 
Figure 11.2.  

Figure 11.2:  Occupation index for large, negative α

 

po

 

p

1

0

P (p)

Complete Degeneracy
We have seen that α → + ∞ results in a Maxwellian distribution function – the case of non-

degenerate  matter.  We now find that as α → – ∞, the electrons completely fill the available cells 
up to a point (the Fermi momentum), beyond which the cells are empty.  This is the case of 
complete degeneracy, for which the occupation index is a step function.

In reality, complete degeneracy never occurs for finite temperatures, but it may come close.  
As the density  of a gas increases, the electrons become more degenerate and the occupation 
index approaches a step function.  In general, if E(po) >>kT, we may use complete degeneracy as 
a good approximation.
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In the case of complete degeneracy, the electron distribution function depends on the 

momentum in a simple way.  For p < po , 

� 

Ne(p)dp = 8π
h3

p2dp  , and for p > po , Ne(p)dp = 0.  

Thus the distribution function will be parabolic up to the Fermi momentum; beyond this it will 
drop to zero, as shown in Figure 11.3, where the shaded region marks the filled momentum cells.

Figure 11.3:  Distribution function for complete degeneracy

� 

Ne p( )

� 

p

� 

po
The value of the Fermi momentum depends solely on the electron density; the more closely 

packed the electrons are, the more high-momentum cells that will be filled, and the higher the 
Fermi momentum will be.  The completely degenerate electron gas is a minimum kinetic energy 
configuration in which electrons are assigned to the lowest possible energy  states.  We can obtain 
the electron density by integrating the distribution function from p = 0 up to the Fermi 
momentum:

Eq. 11.15 

� 

Ne = Ne p( )dp
0

po∫ = 8π
h3

p2dp
0

po∫ = 8π
3h3

po
3 ⇒ po = 3h3

8π
Ne

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
3

We may then find the partial pressure of the degenerate electrons as we did before: 

Eq. 8.12 Pe = 1
3 N v( ) pvdv

0

∞

∫ = 1
3 N p( ) pvdp

0

∞

∫
Assuming the electrons are non-relativistic, we may substitute v = p/m and perform the 

integral:

Eq. 11.16 

� 

Pe = 1
3 N p( ) p

2

m
dp

0

∞∫ = 1
3

8π
h3

p2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
p2

m
dp

0

po∫

Eq. 11.17 Pe =
8π
3h3m

p4 dp
0

po∫ = 8
15

π
h3m

po
5 = Pe,nr   (non-relativistic)

We may then replace the Fermi momentum with the electron density:
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Eq. 11.18 Pe,nr =
8
15

π
h3m

3h3

8π
Ne

⎛
⎝⎜

⎞
⎠⎟

5
3

= h2

20m
3
π

⎛
⎝⎜

⎞
⎠⎟
2
3
Ne

5
3

Recall the ideal gas law for the electron pressure (Pe = NekT), and note that there is no 
temperature in this equation (11.18) for the degenerate electron pressure!

We may continue to evolve this expression by substituting Ne = ρNA /µe (see Equation 9.14):

Eq. 11.19 Pe,nr =
h2

20me

3
π

⎛
⎝⎜

⎞
⎠⎟
2
3
NA

5
3 ρ

µe

⎛
⎝⎜

⎞
⎠⎟

5
3

Inserting numerical values for the constants, we find the following:

Eq. 11.20 Pe,nr = 1.00360 ×10
13 ρ

µe

⎛
⎝⎜

⎞
⎠⎟

5
3

≈ 3.15771×1012ρ
5
3

Here we have used µe = 2.0013 for the mean molecular weight per electron of a gas of pure 
ionized helium.

Now for a non-degenerate gas, the ideal gas law applies, for which P ≈ ρ1.  But as the density 
increases, degenerate electron pressure increases to the point where it becomes much greater than 
the ion pressure.  When the degenerate electrons dominate the gas pressure, we find the pressure 
equation will have changed:

Eq. 11.21  P → Pe,nr ≈ ρ5/3 (a familiar-looking form)

Under what conditions will this occur?  For what combinations of density and temperature 
will completely degenerate electron pressure exceed the calculated non-degenerate electron 
pressure?  

Eq. 11.22 

� 

ρℜT
µe

< h2

20me

3
π
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2
3
NA

5
3

ρ
µe

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

5
3

Inserting constants and solving, we find the following condition for the approximate onset of 
degeneracy:

Eq. 11.23 
 

ρ
µe

> 23.8459 T6( )32  24 T6( )32

We may test this result using different stellar models.  For the center of the Sun, we have ρ/µe 

≈ 100 and T6 ≈ 10, giving 24(T6)
3/2 ≈ 760.  As 100 < 760, the Sun's core would appear to be not 

very degenerate.  On the other hand, a typical white dwarf has ρ/µe ≈ 106 and T6 ≈ 1, making     

24(T6)
3/2 ≈ 24.  As 106 is considerably greater than 24, we can expect white dwarfs to be quite 

degenerate.
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There is no sharp  dividing line between degeneracy and non-degeneracy; the transition is 
gradual.  Strictly speaking, complete degeneracy occurs only for T = 0, and non-degeneracy 
occurs only for infinite temperature.  Objects in the real world exist somewhere in between these 
two extremes, and for this reason we should also consider partial degeneracy.

Partial Degeneracy
In the case of partial degeneracy, we cannot assume an extreme value for α that would 

simplify the electron distribution function.  Instead we must  use the full distribution function in 
our calculations:

Eq. 11.24 

� 

Ne(p)dp = 2
h3

4π p2dp
e α+E kT( ) +1

= 8π
h3

p2dp
e α+E kT( ) +1

The electron density is found by integrating, and the pressure integral is found by inserting 
this distribution function into Equation 8.12:

Eq. 11.25 

� 

Ne = Ne(p)dp0

∞∫ = 8π
h3

p2dp
e α+E kT( ) +10

∞∫

Eq. 11.26 Pe = 1
3 Ne(p)pvdp0

∞

∫ = 8π
3h3

p3vdp
e α+E kT( ) +10

∞

∫
Before integrating, we must substitute expressions for the electron's energy E and speed v.  

For temperatures below one billion K, degeneracy  occurs at non-relativistic electron speeds, and 
we may use non-relativistic expressions:  v = p/m and E = p2/2m.  This yields the following:

Eq. 11.27 

� 

Ne = 8π
h3

p2dp

e α+ p2 2mkT( ) +10

∞∫

Eq. 11.28 

� 

Pe = 8π
3h3m

p4dp

e α+ p2 2mkT( ) +10

∞∫

We now let 

� 

u ≡ p
2

2mkT  

� 

⇒ p = 2mkTu ⇒ dp = 1
2
2mkT
2mkTu

du .  These substitutions 

produce the following set of equations, which constitute an equation of state parameterized by 
the degeneracy parameter α:

Eq. 11.29 

� 

Ne = 4π
h3

2mkT( )32 u
1
2du

e α+u( ) +10

∞∫

Eq. 11.30 

� 

Pe = 8πkT
3h3

2mkT( )32 u
3
2du

e α+u( ) +10

∞∫
These equations are not integrable; therefore we will define the Fermi-Dirac functions:

Eq. 11.31 

� 

F1
2
α( ) ≡ u

1
2du

e α+u( ) +10

∞∫
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Eq. 11.32 

� 

F3
2
α( ) ≡ u

3
2du

e α+u( ) +10

∞∫
These are tabulated in Clayton (1968) for different values of α.  The electron density and 

pressure in the case of non-relativistic, partial degeneracy can then be found from these 
functions:

Eq. 11.33 

� 

Ne = 4π
h3

2mkT( )32F1
2
α( )

Eq. 11.34 

� 

Pe = 8πkT
3h3

2mkT( )32F3
2
α( )

We may modify the electron density equation by inserting the relation Ne = ρNA /µe and 
solving for F1/2(α):

Eq. 11.35 

� 

Ne = ρNA

µe

= 4π
h3

2mkT( )32 F1
2
α( )

Eq. 11.36 F1
2
α( ) = ρ

µe

h3NA

4π
2mkT( )−32 = 1.1051087 ×108 ρ

µe

T −32

In calculating the pressure exerted by a non-relativistic, partially degenerate gas at a given 
density  and temperature, we first use Equation 11.36 to determine F1/2(α).  We then use this value 
to find α from the tables; the tables also give the corresponding value of F3/2(α), from which the 
electron pressure is calculated using Equation 11.34.

Figure 11.4:  Distribution function for partial degeneracy

� 

Ne p( )

� 

p

� 

po
Figure 11.4 shows the momentum distribution function for a partially degenerate gas (the 

darker shaded region) superimposed on the distribution function for a completely degenerate gas 
(the lighter shaded region) from Figure 11.3.  The areas under the curve in each graph – 
representing the electron density Ne – are the same.
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If we take the ratio of electron pressure to electron density, we find the following:

Eq. 11.37 Pe
Ne

= 2kT
3

F3
2

F1
2

⇒ Pe = NekT
2
3

F3
2

F1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= ρℜT
µe

2
3

F3
2

F1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Note the similarity of this last expression to the ideal gas law.  The factor 2/3 [F3/2(α)/F1/2(α)] 
is the extent  to which the degenerate electron pressure differs from that of a non-degenerate gas.  
This factor increases without limit from 1 (for an ideal gas).  The total gas pressure includes the 
ion pressure, which remains ideal as the electrons become degenerate.

Eq. 11.38 Pg = Pi + Pe =
ρℜT
µi

+ ρℜT
µe

2
3

F3
2

F1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= ρℜT 1
µi

+ 1
µe

2
3

F3
2

F1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(Here µe and µi  are the mean molecular weights per electron and per ion, respectively.)

As an example of a partial degeneracy calculation, let us determine the electron pressure in a 
gas of completely  ionized helium at a density of 350,000 g/cc and a temperature of 80 million K.  
We begin by finding the value of F1/2(α) for these conditions:

Eq. 11.39 F1
2
α( ) = 1.10511×108 ρ

µe

T −32 = 1.10511×108 350000( )
2

80e6( )−32 = 27.02764

In the degeneracy tables in Clayton (1968), this result is found between the α values of –11.7 
and –11.8.  We then interpolate to find α, and interpolate again to find the corresponding value of  
2/3 F3/2(α), as shown in Table 11.1:

Table 11.1:  Interpolation of Fermi-Dirac functions
 F1/2(α) α 2/3 F3/2(α)
 26.92220 –11.7 130.47720
 27.02764  ⇒ –11.73085  ⇒ 131.31315
 27.26393 –11.8 133.18650
The electron pressure can then be calculated using Equation 11.37:

Eq. 11.40 Pe =
ρℜT
µe

2
3
F3 2
F1 2

⎛

⎝
⎜

⎞

⎠
⎟ =

350000( ) 8.314e7( ) 80e6( )
2

131.31315
27.02764

= 5.655 ×1021

We may compare this with the pressure exerted by the nuclei (ions):

Eq. 11.41 

� 

Pi = ρℜT
µi

=
350000( ) 8.314e7( ) 80e6( )

4
= 5.820×1020

Thus, the degenerate electrons, which outnumber the nuclei by a factor of 2, exert nearly 10 
times the pressure; the additional factor of 5 is due to degeneracy.
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Relativistic Degeneracy
Suppose that the electron density  is so high in a completely degenerate electron gas that the 

highest momentum states are relativistic.  In this case, we must  rework our equations because 
some of the relations we used are no longer valid.  In particular, p = mv is true only if we use the 

relativistic mass m, rather than the rest  mass mo , where m = γmo = mo 1− β 2 and β ≡ v/c.  

Then the momentum is as follows:

Eq. 11.42 p = mv = mc2 ⋅ v
c2

= Ev
c2

 where E = mc2 = γmoc
2 = γEo 

Note:  Previously, we have sometimes been using m to indicate the electron mass me ; be very 
careful in using the relativistic equations because m now has a different meaning.

To estimate the borderline between relativistic and non-relativistic conditions, we set v ≈ c 
and E ≈ 2Eo = 2moc

2 ≈ 1 MeV (where mo = me = 0.511 MeV/c2).  The Fermi momentum (po =  

Ev/c2 ≈ 2Eoc/c2 = 2moc
2/c = 2mec) can then be related to the density:

Eq. 11.43 

� 

po = 3h3

8π
Ne

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
3

= 3h3

8π
NAρ

µe

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
3

= 2mec

Eq. 11.44 ρ
µe

= 2mec( )3 8π
3h3NA

= 7.744769 ×106  g/cc

For µe ≈ 2,  ρ > ≈ 1.5 ×107 g/cc will be relativistic.

Relativistic, Complete Degeneracy
We will now find an expression for the pressure exerted by a completely degenerate gas of 

relativistic electrons.  We will begin by writing the relativistic speed in terms of the relativistic 
momentum:  

Eq. 11.45 p = mv = mov

1− v
c( )2

⇒ p2 1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟
= mo

2v2 ⇒ p2 = v2 mo
2 + p2

c2
⎛
⎝⎜

⎞
⎠⎟

Eq. 11.46 v = p

mo
2 + p2

c2

= p /mo

1+ p
moc

⎛
⎝⎜

⎞
⎠⎟

2

This is inserted into the pressure integral, along with our expression for the distribution 
function for complete degeneracy Ne(p) = 8πp2/h3 :
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Eq. 11.47 Pe = 1
3 Ne(p)pvdp0

∞

∫ = 8π
3meh

3
p4dp

1+ p
mec( )20

∞

∫

We now make a substitution, letting p =mec sinh θ and dp =mec cosh θ dθ, and recalling the 

identity 1 + sinh2θ = cosh2θ :

Eq. 11.48 

� 

Pe = 8π
3meh

3

mecsinhθ( )4meccoshθ dθ
1+ sinh2θ0

∞∫ = 8π me
4c5

3h3
sinh4θ dθ

0

θo∫

The upper limit corresponds to the Fermi momentum:  sinh θo = po /mec ≡ x.  The integral 
can be found, and this leads to the general solution for the pressure.

Eq. 11.49 

� 

sinh4θ dθ
0

θo∫ = sinh
3θo
4

− 3sinh2θo
16

+ 3θo
8

Eq. 11.50 Pe =
π me

4c5

3h3
2sinh3θo − 3

2 sinh2θo + 3θo⎡⎣ ⎤⎦ =
π me

4c5

3h3
f (x) = 5.94251×1022 f (x)

  where

Eq. 11.51 

� 

f x( ) = x 2x2 − 3( ) x2 +1+ 3sinh−1 x   and

Eq. 11.52 x ≡ po
mec

= h
2mec

3Ne

π
⎛
⎝⎜

⎞
⎠⎟
1
3
= 1.197044 ×10−10Ne

1
3 = 1.010867 ×10−2 ρ

µe

⎛
⎝⎜

⎞
⎠⎟

1
3

From this it can be shown that in the limit of a non-relativistic, completely degenerate gas 
(meaning x → 0), the electron pressure is as previously derived:

Eq. 11.19 Pe,nr =
h2

20me

3
π

⎛
⎝⎜

⎞
⎠⎟
2
3
NA

5
3 ρ

µe

⎛
⎝⎜

⎞
⎠⎟

5
3

= 1.00360 ×1013 ρ
µe

⎛
⎝⎜

⎞
⎠⎟

5
3

This is a polytrope with γ = 5/3  ⇒   n = 1.5.
In the limit of a highly relativistic, completely degenerate gas (meaning x → ∞), we find a 

different expression:

Eq. 11.53 Pe,rel =
hc
8

3
π

⎛
⎝⎜

⎞
⎠⎟
1
3
NA

4
3 ρ

µe

⎛
⎝⎜

⎞
⎠⎟

4
3

= 1.24101×1015 ρ
µe

⎛
⎝⎜

⎞
⎠⎟

4
3

This is a polytrope with γ = 4/3  ⇒   n = 3.

Relativistic, Partial Degeneracy
For a highly relativistic, partially degenerate gas we again use the occupation index to find 

suitable expressions for the density and pressure.  We begin with the distribution function from 
before:
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Eq. 1154 

� 

Ne(p)dp= 8π
h3

p2dpP

� 

p( )

� 

= 8π
h3

p2dp
e α+E p( ) kT( ) +1

We then insert this function into the integrals for the electron density and electron pressure:

Eq. 11.55 

� 

Ne = Ne p( )dp
0

∞∫ = 8π
h3

p2dp
e α+E p( ) kT( ) +10

∞∫

Eq. 11.56 Pe = 1
3 Ne p( ) pvdp

0

∞

∫ = 8π
3h3

p3vdp
e α+E p( ) kT( ) +10

∞

∫
We must now insert an expression for the energy as a function of momentum.  In the 

relativistic case, we have p = vE/c2 and v → c; combining these we have E ≈ pc:

Eq. 11.57 

� 

Ne = 8π
h3

p2dp
e α+ pc kT( ) +10

∞∫

Eq. 11.58 

� 

Pe = 8π
3h3

p3cdp
e α+ pc kT( ) +10

∞∫
If we now define u ≡ pc/kT, then p = ukT/c and dp = (kT/c)du.  Making these substitutions, 

we arrive at more Fermi-Dirac functions:

Eq. 11.59 

� 

Ne = 8π
h3

kT
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3 u2du

e α+u( ) +10

∞∫ = 8π
h3c3

kT( )3F2 α( ),   where 

� 

F2 α( ) ≡ u2du
e α+u( ) +10

∞∫

Eq. 11.60 

� 

Pe = 8πc
3h3

kT
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
4 u3du

e α+u( ) +10

∞∫ = 8π
3h3c3

kT( )4F3 α( ),   where 

� 

F3 α( ) ≡ u3du
e α+u( ) +10

∞∫

These Fermi-Dirac functions are tabulated in Kippenhahn & Weigert (1990).
For such a highly relativistic, partially degenerate gas, we find an expression similar to 

Equation 11.37 (which applied to a non-relativistic, partially degenerate gas):

Eq. 11.61 
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Fermi-Dirac Functions
We close this chapter with a few approximations of the Fermi-Dirac functions.
The general form is given as follows, in terms of both α and ψ (= – α):

Eq. 11.62 

� 

Fn α( ) ≡ undu
e α+u( ) +10

∞∫   or  

� 

Fn ψ( ) ≡ undu
e u−ψ( ) +10

∞∫
Strong degeneracy is indicated by α → – ∞ or ψ → + ∞ .
Weak degeneracy is indicated by α → + ∞ or ψ → – ∞ .
Kippenhahn & Weigert (1990) present the following expansion for the case of strong 

degeneracy:
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Eq. 11.63 
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Fn ψ( ) = ψn+1

n+1
1+ 2 C2 n+1( )nψ−2 +C4 n+1( )n n −1( ) n − 2( )ψ−4 + ...[ ]{ }

The coefficients are C2 = π2/12 and C4 = 7π4/720.  The strong degeneracy  approximations for 
F1/2(ψ) and F3/2(ψ) are then as follows:
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Eq. 11.66 F3
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Eq. 11.67 F3
2
ψ( ) = 2

5
ψ 5 2 1+ 5π

2

8
ψ −2 − 7π

4

384
ψ −4 + ...

⎧
⎨
⎩

⎫
⎬
⎭
≈ 2
5
ψ 5 2

In the case of weak degeneracy, Equation 11.62 can be modified because the argument of 
the exponent will always be a large, positive number, making the exponential much greater than 
1:

Eq. 11.68 

� 

Fn α( ) ≡ undu
e α+u( ) +10

∞∫ = undu
eαeu +10

∞∫ α→∞⎯ → ⎯ ⎯ undu
eαeu0

∞∫ = e−α une−udu
0

∞∫
The integral is a gamma function:

Eq. 11.69 Fn(α) ≈ Γ(n + 1)e–α = n Γ(n) e–α

This leads directly to approximations for F1/2(α) and F3/2(α) (in the case of weak degeneracy):

Eq. 11.70 F1
2
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Eq. 11.71 F3
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We may illustrate the reliability  of these approximations by computing the Fermi-Dirac 
functions at each extreme and comparing with tabulated values.  For strong degeneracy, we 
choose the most degenerate condition listed in Clayton's (1968) Table 2-3.  We then use 
Equations 11.65 and 11.67 to approximate the Fermi-Dirac functions for this same α, as shown in 
Table 11.2:

Table 11.2:  Comparison of strong degeneracy approximations with tabulated values
  F1/2(α) 2/3 F3/2(α)
Clayton (1968) α = –15.9 42.47429 275.37153
Approximations    ⇒ 2/3 (–α)3/2 =42.26729 ⇒    2/3[2/5(–α)5/2] =268.81998
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Although not perfect matches, these approximate values are certainly in the ballpark.
We now repeat the process for the case of weak degeneracy, using the least degenerate 

condition in Clayton's (1968) Table 2-3 and Equations 11.70 and 11.71:

Table 11.3:  Comparison of weak degeneracy approximations with tabulated values
  F1/2(α) 2/3 F3/2(α)
Clayton (1968) α  = 4.0 0.016128 0.016179
Approximations    ⇒ 1

2 π e−α = 0.016232 ⇒      23 3
4 π e−α( )= 0.016232

These values are identical, as the approximations for the two functions differ only by a factor 
of  2/3.  Again, the approximations provide values that are comparable to the tabulated quantities.

In the last few chapters of the book, we will be examining the evolution of stars, all the while 
keeping our eyes open for situations in which degeneracy  might flourish.  The general role 
played by degeneracy is to increase the pressure exerted by a gas undergoing compression – over 
and above the pressure predicted by  the ideal gas law.  Degeneracy will become significant 
where the gas density  becomes extremely high, a condition met frequently in the realm of giant 
gas spheres constrained by gravitational forces.
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CHAPTER 12:  Stellar Synthesis
In previous chapters we examined some of the physical laws that govern the structure of 

stars, in hopes of building numerical stellar models that will help us understand the life cycles of 
stars.  It is now time to apply our results to stellar evolution, to determine whether we can 
explain the various pathways this process can take.  We begin by considering the stages in which 
stars are synthesized into stable, self-luminous spheres.

Star Formation
The details of star formation are not particularly  well understood as yet, but it  is generally 

believed that stars are created from clouds of interstellar gas and dust.  Young stars are often 
found in association with such regions.  Compositions of the various stellar populations can be 
explained in terms of the recycling of heavy elements from massive stars, through supernovae, to 
the interstellar medium, and back into stars.  Gas and dust clouds provide concentrations of 
interstellar matter that appear to be logical starting points for the gravitational forces that 
assemble atoms into stars.  

But the process of manufacturing stars is not exactly straightforward.  Random thermal 
motions in the interstellar cloud make it difficult for gravity  to force the matter to converge on 
any particular point.  Unless these thermal motions can be reduced (by keeping the temperature 
low) or gravity can be enhanced (by increasing the density), the gas will remain in equilibrium 
and star formation will not proceed.

Further problems arise due to the immense cloud sizes involved.  Transforming clouds with 
radii measured in parsecs into stars with radii measured in solar radii requires a radial reduction 
of approximately  7 orders of magnitude, which implies a spin rate increase of 14 orders of 
magnitude or more, if angular momentum is indeed conserved.  This means that an initial 
rotation period on the order of the Galactic rotation period (200 million years or so) would 
translate into a stellar rotation period measured in seconds – which is physically impossible for 
normal stars to achieve.  Magnetic fields may provide a solution by transferring angular 
momentum from the forming star to its surrounding nebula, but including such fields in our 
calculations is not a trivial matter.  For now we will bypass these difficulties and examine a few 
basic principles in hopes of gaining some insight into the process of star formation.

Pierce:  Notes on Stellar Astrophysics Chapter 12:  Stellar Synthesis

222



The Jeans Criterion
For an interstellar cloud in equilibrium – neither expanding nor contracting – we should 

expect that the magnitudes of the kinetic and potential energies will be equal:  KE = |PE|.  We 
can write an appropriate expression for each, in terms of the cloud mass (M), radius (R) and 
temperature (T):

Eq. 12.1 PE = −GM
R
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Equating these expressions gives us an equilibrium condition:

Eq. 12.3 
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= GM
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We may eliminate the mass by writing it in terms of the cloud density  (M = 4/3 πR3ρ) and 
substituting into the above expression:

Eq. 12.4 
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3
2
ℜT

µ
= 4
3
πR2Gρ

This represents an equilibrium condition, for which the kinetic and potential energy terms are 
in balance.  In order for the cloud to collapse, the potential term (on the right) must become 
dominant over the kinetic term (on the left); this can be achieved by reducing the temperature, 
increasing the density, and/or increasing the radius of the cloud.  Solving this expression for the 
radius, we find the size of the cloud at equilibrium:

Eq. 12.5 R =
9
8π

ℜT
µGρ

For a cloud of a given density and temperature, R indicates the maximum size the cloud may 
have and still be stable against collapse.  Sir James Jeans performed a similar analysis using a 
'cloud' surrounded by interstellar gas, rather than isolated as we have presumed.  His result is 
known as the Jeans length or the Jeans criterion:

Eq. 12.6 
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RJ = πℜT
µGρ

We can evaluate this radius, using several different units for convenience:

Eq. 12.7 
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The value of µ to be used depends on the type of cloud being considered.  For a diffuse 
interstellar cloud, the hydrogen is primarily atomic (H I), giving a mean molecular weight of 
about 1; in a molecular cloud, the hydrogen is molecular (H2) and µ ≈ 2.  If we assume each 
cloud also contains 25% helium by mass, these values become 16/13 ≈ 1.23 and 16/7 ≈ 2.29, 
respectively.

The Jeans criterion gives an upper limit on the radius of a stable cloud; if a cloud of density ρ 
has a radius greater than RJ , the cloud will be bound and collapse will occur.  Using this 
criterion, a cloud with a mean molecular weight of 2.3, a density  of 1e–22 (or about 26 particles/
cc), and a temperature of 10 K, would have a Jeans length of about 4.2 pc, with a mass of 470 
M☉ – enough to make a small open cluster.

The mass obtained here is known as the Jeans mass:

Eq. 12.8 
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A cloud of a given density that has M > MJ will have sufficient gravity to be bound and thus 
will collapse.  Clouds with M < MJ will be stable against collapse.  Figure 12.1 shows the 
variation of the Jeans mass with density and temperature, for atomic and molecular clouds.

Figure 12.1:  Jeans mass vs. density, for molecular (m) and atomic (a) clouds, at temperatures of 
10K and 50K
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The Jeans mass criterion says that clouds with small masses are stable against collapse while 
larger ones are not.  This implies that low mass objects such as planets, and perhaps small stars, 
are unlikely to form directly  from the interstellar medium; instead, clouds with large masses will 
collapse and fragment into smaller, denser clouds, which can then form objects of lower mass.  
(RJ and MJ both decrease with increasing density if the collapse is essentially isothermal.)

Free-Fall Time Scale
Interstellar clouds will be comprised primarily of atomic or molecular hydrogen, helium, and 

dust grains, with the main opacity source being the dust grains.  During collapse of the cloud, 
gravitational energy is released, but most of this energy is radiated away and thus lost.  This is 

because the initial density of the cloud is so low that the optical depth 

� 

τ = κ ρ dr
0

R∫( )  is 

insignificant, and the radiation suffers little attenuation as it escapes.  
Because of these initial radiation losses, the cloud temperature does not increase significantly 

and the pressure remains relatively low.  Therefore, the collapse is nearly unhindered, and the 
particles in the cloud are in free fall.  The time scale over which this process occurs can be 
estimated using Kepler's third law.

Consider a small particle dropped onto a large mass M from a distance R.  The trajectory is 
essentially  an orbit  of semi-major axis a ≈ 1/2 R, and the time required for the particle to impact  is 
t ≈ 1/2 P, where P is the orbital period, given by P2 = 4π2a3/GM.  Combining these, we arrive at 
the free-fall time scale (or the dynamic time scale):

Eq. 12.9 
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For the example given above, with MJ = 470 M☉ and RJ = 4.2 pc, we find the free-fall time 
scale to be about 6 million years.  For a smaller molecular cloud with a density  of 1e–18, and a 
temperature of 10 K, we find a Jeans length of about 8700 AU, a Jeans mass of 4.7 M☉, and a 
free-fall time scale of 60,000 years.  By comparison, the free-fall time scale for a particle at the 
Sun's surface is only about 27 minutes.  All of these time scales are relatively short, considering 
that stellar lifetimes are typically measured in billions of years.  The free-fall collapse of an 
interstellar cloud proceeds fairly quickly compared to most other phases of stellar evolution.

Energy Sinks
During the initial free-fall period, the density  increases throughout the cloud, with the 

greatest increase occurring in the central regions.  This causes the optical depth to increase; as 
the cloud collapses, the integrated path length decreases as r, but the density  increases as 1/r3, 
making the optical depth increase as 1/r2 ; the cloud does not remain optically  thin forever. The 
result is that more of the photon energy is retained within the cloud, where it raises the 
temperature, and with it, the pressure.  The increased pressure in the center of the cloud tends to 
slow the collapse in that  region.  The increased temperature soon evaporates the dust in the 
central regions, eliminating it as the major source of opacity and leaving molecular hydrogen to 
fill that role.
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As the temperature rises to near 1300 K, the H2 begins to dissociate.  This process serves as 
an energy sink; energy that would have gone into increasing the temperature and pressure is 
instead used for dissociation.  The resulting pressure is insufficient to slow the in-falling gas, and 
a free-fall collapse again takes place.  As the atomic hydrogen accumulates in the center, the 
pressure resumes its buildup, and a shock wave develops where the free-falling hydrogen atoms 
meet the growing central core of atomic hydrogen.

Inside this central region, the temperature and pressure of the atomic hydrogen continue to 
rise; at around 10,000 K, the neutral hydrogen ionizes, creating another energy sink.  Use of 
gravitational potential energy to ionize the hydrogen results in insufficient energy being available 
to maintain the gas pressure, and the ionized hydrogen begins another free fall.  As before, where 
these ions accumulate in the center, a shock wave develops and moves outward through the 
cloud.  The sequence of events at a given point inside the cloud is shown in Figure 12.2; arrows 
show the varying infall rates of the gas, with longer arrows indicating free fall. 

Figure 12.2:  Sequence of ionization-dissociation events in the collapsing cloud
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Only when the inner (star-forming) region of the cloud has been dissociated and completely 
ionized can the collapsing cloud enter the more gradual contraction phase of a protostar, which 
can be characterized by a quasi-hydrostatic equilibrium.  We may estimate when this protostar 
stage will be reached by comparing the energy needed for dissociation and ionization with the 
gravitational potential energy liberated by collapse and contraction. 

The dissociation energy of molecular hydrogen (ED) is 4.5 eV, the ionization energy of 
hydrogen (χH) is 13.6 eV, and the ionization energy of helium (χHe) is 24.6 + 54.4 = 79.0 eV for 
complete ionization.  The total energy per gram needed to ionize and dissociate the gas mixture 
is then as follows:
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Ignoring the contribution of metals, we let Y = 1 – X.  Inserting appropriate values we find a 
simple expression for the energy needed to dissociate and ionize each gram of the gas:
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Eq. 12.11 
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The source of this energy is the gravitational collapse of the cloud.  From the virial theorem, 
the energy available from this gravitational collapse is half the change in potential energy:
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Here α is a dimensionless constant on the order of 1 that depends on the density distribution 
in the cloud.  We now set this energy equal to the ionization-dissociation energy and solve for R:
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Inserting constants, and letting α = 6/7 (suitable for a polytrope of index 1.5), we find a mass-
radius relation:
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Assuming X ≈ 0.75, we find the following:

Eq. 12.15 
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This represents the maximum radius for a stable protostar in quasi-hydrostatic equilibrium; 
this protostar is dissociated, ionized, and contracting.  Prior to this point, the cloud collapses 
because most of the gravitational potential energy that is being released is not available to 
increase its temperature and pressure.  

Equation 12.15 applies at the start of the contraction phase for all protostars.  We may also 
write this equation as a mass-density relation:
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From this, it is evident that higher mass protostars have lower densities when they begin their 
contraction phase; this trend will be maintained throughout the contraction to the main sequence.

We can model such a protostar as a polytrope of index 1.5, using equations from Chapter 9:
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Eq. 9.75 
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Ignoring radiation pressure, we may then find the central temperature from the ideal gas law 
and Equation 12.13:

Eq. 12.17 
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Inserting values, we obtain the following:
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Using X = 0.75 (and Y = 0.25) we find µ ≈ 0.59 (for complete ionization).  This yields a value 
of 146,000 K for the central temperature of the protostar – far too low for fusion to occur.  The 
only energy source available to the protostar is then gravitational contraction, which will proceed 
on the Kelvin-Helmholtz (or thermal) time scale:
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Inserting constants, we reach a general result:

Eq. 12.20 
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With Equation 12.15, this can be further simplified to give the initial time scale (at the start 
of the contraction phase):

Eq. 12.21 
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This time will be necessarily short because protostar luminosities are high – typically  100 to 
1000 L☉.  (A 1 M☉ protostar with a surface temperature of ≈ 3000 K and a radius of 50 R☉ will 
have a luminosity of about 180 L☉ and an initial contraction time scale of about 3400 years.)  As 
the contraction proceeds, the radius (and for some stars, the luminosity) decreases, causing the 
time scale to increase and thereby slowing the evolution.

We may plot the tracks of protostars on an HR diagram, even though these objects are largely 
invisible to us.  (The surrounding dust in the outer region of the cloud absorbs visible light, 
reradiating the energy  in the infrared.)  With large radii and low surface temperatures, collapsing 
clouds would be located far to the right of the familiar main sequence region.  But at the start of 
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the contraction phase, the protostars would all appear near the upper right corner of the HR 
diagram, from which their paths would diverge according to mass, as shown in Figure 12.3.

Figure 12.3:  Pre-main sequence evolutionary tracks
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L

To a varying degree, each of these tracks includes a nearly vertical portion, along which the 
temperature remains nearly constant as the protostar contracts.  This vertical portion is known as 
the Hayashi track, and it marks the high-temperature boundary of the forbidden region, for 
which hydrostatic equilibrium is unattainable for a star of a given mass and luminosity.  A 
protostar that  finds itself with a temperature that is too low – placing it in the forbidden region to 
the right of the Hayashi track – will collapse rapidly  until it reaches this boundary, then contract 
and move down the Hayashi track.  While on the Hayashi track, a protostar maintains the largest 
possible radius that is consistent with hydrostatic equilibrium.  Such stars are fully  convective 
(which is why we used an n = 1.5 polytrope to model our protostar).

Evolutionary  tracks such as those in Figure 12.3 are not obtained by observing protostars as 
they  gradually approach the main sequence; rather, they are described by  numerical models of 
protostars in quasi-hydrostatic equilibrium as they slowly  contract, heat  up, and eventually begin 
nuclear fusion.  As an example of the details of one such model, we will examine a 1 M☉ 
protostar as presented by Novotny (1973) Model 7-5A, B.  The approximate track for this star is 
shown in Figure 12.4, which shows a small portion of the HR diagram.
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Figure 12.4:  Pre-main sequence evolution of a 1 M☉ protostar
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As the protostar evolves along this path, its rate of contraction gradually diminishes:  point 1 
is reached in 126,000 years, point 4 in 20 million years, and point 7 in 50 million years.  During 
the descent of the Hayashi track (point 1 to 2) the star is fully  convective.  As it contracts, it heats 
up such that by point 2 the central temperature is high enough (a few million K) to ignite some of 
the primordial nuclei in the core.  These nuclei (2D, 7Li, 7Be) were part  of the mixture that 
comprised the interstellar cloud from which the protostar formed.  But these reactants are not 
particularly abundant, and they are not replenished by the reactions (shown in Table 12.1); 
therefore the energy that is released serves only to slow the contraction temporarily.

Table 12.1:  Fusion of primordial nuclei

  ΔE (MeV)
[A2] 2D +1H → 3He +γ +5.493 
[A5] 7Li +1H → 4He + 4He +17.347
[A4'] 7Be +1H → 8B +γ +0.135

Contraction of the star heats the core, and this has an effect on the mode of heat  transfer.  As 
T increases, the opacity – which varies as ρ / T 3.5 – decreases; and the magnitude of the radiative 
temperature gradient – which varies as κ / T 3 – also drops.  This makes the radiative gradient 
shallower than the adiabatic gradient, and a radiative core develops and grows outward through 
the star (points 2 to 4).

As the radiative core grows, the star becomes less opaque overall, allowing more energy  to 
flow outwards and increasing the luminosity (the upward bend at point 3).  Because the star is 
still shrinking, the effective temperature – which varies as (L / R2)1/4 – must increase, as indeed it 
does from point 3 to 5.  

By point 4, the star is radiative throughout; but then ignition of primordial 12C – burning to 
14N in a partial CNO cycle (reactions [B1], [B2], and [B3]) – releases additional energy  in the 
core, raises the core temperature, and causes the (radiative) temperature gradient to become 
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steeper.  This results in the growth of a convective core (points 4 to 6) and the return to a more 
vertical track.  (As a general rule, convective transport produces vertical tracks while radiative 
transport produces nearly horizontal tracks.)

From point 3 to 6, nuclear reactions gradually  take over the job of supplying energy  for the 
luminosity, and contraction slows to a halt.  From point 6 to 7 the star makes a transition from 
primordial 12C burning to the proton-proton chain, which will serve as the principal energy 
source throughout the star's main sequence lifetime.  Point 7 marks the Zero Age Main 
Sequence  (ZAMS), which is the start of core hydrogen burning and the beginning of the main 
sequence phase.

Similar events can be described for protostars of other masses as they approach the main 
sequence.  Higher mass protostars spend less time in this pre-main sequence phase, with a 15 M☉ 
protostar reaching the main sequence in only  60,000 years, compared to the Sun's 50 million 
years; protostars less massive than the Sun evolve even more slowly.  

The basic reason for this disparity  in evolution rates is gravity; with greater mass comes a 
stronger gravitational acceleration, which speeds up the contraction process and hurries the 
protostar on to the next phase.  Stronger gravitational forces require greater pressure forces to 
maintain the quasi-hydrostatic equilibrium state; because higher mass protostars have lower 
densities (Equation 12.16), their higher pressures must be produced by  greater kinetic 
temperatures, with the result that the more massive protostars tend to be hotter, both inside and 
on the surface.  This is seen in the evolutionary tracks of Figure 12.3.  The higher mass protostars 
contract to the main sequence at a nearly constant luminosity; this requires that  R2Te

4 ≈ constant, 

which in turn means that  the effective temperature varies as 1/ R .  In contrast, the vertical 
tracks of the low mass protostars produce a more constant effective temperature and presumably 
a more subdued rise in the core temperature.

The contraction of a protostar is ultimately halted by hydrogen fusion reactions in the core, 
which begin at a temperature of about 10 million K.  The more massive protostars – with their 
higher temperatures – will reach this value fairly quickly and begin their main sequence lifetimes 
in short order.  With their more gradual contraction rates and lower temperatures, the less 
massive protostars will begin fusion only after the forces of gravity have slowly squeezed the 
core temperature up  to the threshold value.  But for some protostars, this effort will be in vain.   
Protostars less massive than about 0.08 M☉ lack the gravity to ever attain hydrogen fusion 
temperatures and thus are unable to achieve stardom; such spheres are destined to become 
brown dwarfs – essentially, failed stars.

The Main Sequence
We now focus our attention on the main sequence stars, which emerge from the dust 

cocoons that enveloped the contracting protostars.  The start of the main sequence phase – the 
ZAMS (described above) – is marked by the ignition of hydrogen fusion reactions that release 
sufficient nuclear energy to not only maintain the luminosity but also heat the star, producing 
adequate pressure to halt the gravitational collapse.  Because a newly formed star has hydrogen 
in great abundance, this phase of stellar evolution has the potential to last for a very  long time.  
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In fact, about 90% of the stars we observe are main sequence stars, indicating that this is an 
extremely stable portion of the star's life.  Why is this so?

The Stellar Thermostat
When we describe a star as being stable, we do not mean to imply that the star's properties 

are constant.  Stars change continually, and the changes range anywhere from the rapid and 
obvious to the gradual and subtle.  Main sequence stars obtain energy by the fusion of hydrogen 
into helium in their cores, causing their properties to vary  on the nuclear time scale.  As this time 
scale is relatively  long, the changes that  result from hydrogen burning will be very gradual – so 
gradual that they  will be unnoticeable over a few centuries of human observation.  In this sense, 
the main sequence stars can be regarded as being quite stable.

The star needs some help to assure this stability.  In order to produce nuclear energy at the 
same rate as the star's luminosity is releasing energy into space, the star needs some sort of 
feedback mechanism to control the reaction rate.  And this feedback mechanism must operate on 
a timescale that is shorter than the nuclear time scale.  The stellar thermostat satisfies this need.

In the core of a main sequence star, nuclear energy is produced at a rate given by ε.  This 
energy heats the core, maintaining sufficient pressure to balance the omnipresent  gravitational 
forces.  Now suppose that  for whatever reason, the energy generation rate increases slightly; the 
increase in available energy  will raise the temperature of the core, causing the gases in the core 
to exert a slightly  greater pressure.  This pressure increase destroys the balance of hydrostatic 
equilibrium, and the core expands.  However, the expanding gas does work on the overlying 
layers, which cools the core.  This lower temperature, coupled with the reduced density caused 
by the expansion, results in a lower energy generation rate.  We may express this stellar 
thermostat as follows:

ε↑ ⇒ T↑ ⇒ P↑ ⇒ R↑ ⇒  ρ↓ , T↓ ⇒  ε↓
Similarly, a small reduction in ε lowers the core temperature (as energy continues to flow 

outward) and reduces the pressure exerted by  the core.  The resulting gravitational contraction of 
the core increases both its density and temperature and therefore raises ε :  

ε↓ ⇒ T↓ ⇒ P↓ ⇒ R↓ ⇒  ρ↑ , T↑ ⇒  ε↑
These adjustments occur on the thermal time scale and thus are rapid enough to keep  the 

energy generation rate from straying too far from its equilibrium value.  

Main Sequence Properties
As noted, the protostars distribute themselves along the main sequence according to their 

masses.  Their properties vary along the main sequence as shown in Table 12.2 and illustrated in 
Figures 12.5 to 12.8.
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Table 12.2:  Main sequence properties (adapted from Cox 2000)
Sp M/M☉ R/R☉  ρ ρ  Teff L/L☉

O3 120 15 0.036  
O5 60 12 0.035 42000 399000
O6 37 10 0.037  
O8 23 8.5 0.037  
B0 17.5 7.4 0.043 30000 39500
B3 7.6 4.8 0.069  
B5 5.9 3.9 0.099 15200 722
B8 3.8 3 0.141 11400 135
A0 2.9 2.4 0.210 9790 47.1
A5 2 1.7 0.407 8180 11.5
F0 1.6 1.5 0.474 7300 5.69
F5 1.4 1.3 0.637 6650 2.94
G0 1.05 1.1 0.789 5940 1.34
G2 1 1 1 5790 1
G5 0.92 0.92 1.18 5560 0.720
K0 0.79 0.85 1.29 5150 0.452
K5 0.67 0.72 1.80 4410 0.174
M0 0.51 0.6 2.36 3840 0.0696
M2 0.4 0.5 3.20 3520 0.0342
M5 0.21 0.27 10.7 3170 0.00655
M8 0.06 0.1 60

Figure 12.5:  Main sequence radius vs. mass (both in solar units)
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Figure 12.6:  Main sequence mean density vs. mass (both in solar units)

Figure 12.7:  Main sequence effective temperature vs. mass (in solar units)
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Figure 12.8:  Main sequence luminosity vs. mass (both in solar units)

In general, the graphs are fairly linear and show clear trends.  As mass increases up  the main 
sequence, radius, luminosity, and effective temperature all increase while the mean density 
decreases.  High mass stars are bigger, hotter, more luminous, and less dense than low mass stars, 
and these properties affect their energy generation, their structure, and their future evolution.

In examining the structure of main sequence stars, we will find it convenient to divide them 
into two groups, according to the manner in which they generate energy:  the lower main 
sequence stars, which use the pp chain, and the upper main sequence stars, which use the CNO 
cycle.  The boundary between these two groups is around 1.5 M☉.

The lower main sequence stars have less mass and consequently weaker gravitational forces 
holding them together.  Less pressure is needed for equilibrium, and lower kinetic temperatures 
are sufficient to supply this pressure, in part due to the higher densities of these stars.  With lower 
core temperatures, these stars generate energy slowly  by the proton-proton chain, but this rate is 
enough to maintain the stars' luminosities, which are also relatively low due to their small radii 
and low effective temperatures.

The upper main sequence stars have greater mass and consequently stronger gravitational 
forces holding them together.  More pressure is needed for equilibrium, and higher kinetic 
temperatures are needed to supply this pressure, in part due to these stars' lower densities.  With 
higher core temperatures, these stars generate energy  rapidly  by the CNO cycle, but  this rate is 
necessary  to support the stars' high luminosities, which are produced by their large radii and high 
effective temperatures.
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We saw in Chapter 10 that the temperature dependence of the hydrogen-burning reaction 
rates can be written as ε ≈ T v, where v ≈ 4 for the pp chain and v ≈ 20 for the CNO cycle.  This 
means that the CNO cycle is more sensitive to temperature than the pp chain, and therefore most 
of the CNO energy will be generated at the highest range of temperatures found in the innermost 
radii at  the center of the core.  With the reaction rate and the temperature both peaking sharply at 
the center of the star, the temperature gradient will be fairly steep, and convection will develop 
easily.  We may  expect the upper main sequence stars to have convective cores, which will 
provide thorough mixing of the hydrogen fuel with the helium ash.

In contrast, energy generation by the pp chain will be much less centralized, with reactions 
spread over a comparatively  broader range of temperatures and radii; the temperature gradient 
will then be much shallower, and convection will be more difficult to establish.  Thus, a lower 
mass main sequence star will have a radiative core.  As helium is produced by fusion, it will be 
deposited in the center of the star to form an isothermal helium core, which will grow throughout 
the main sequence lifetime.

In the outer regions of the lower main sequence stars, decreasing temperatures and less 
complete ionization tend to increase the opacity  (κ ≈ ρ/T 3.5), and this produces a convection zone 
in the outer layers.  The depth of this convection zone varies with the temperature of the star; in 
the Sun, the outermost 20% of the radius is convective, and this fraction increases for cooler 
stars, such that below about 0.4 M☉, the star is entirely convective.

As can be seen in Figure 12.5, for stars below 10 M☉ , R ∝ M 3/4.  Recalling from Chapter 9 
that the central temperature scales as M/R, we may  easily find that Tc ∝ M 1/4.  Thus, central 
temperature should increase slowly  up  the main sequence, as we had anticipated, and this 
gradually changes the dominant core reactions over from the pp chain to the CNO cycle.  

Applying this mass-radius relation to the mean density, we find that ρ  ≈  M/R3 ≈  M/M 9/4 ≈  

1/M 5/4, as our density graph seems to indicate.  The combination of higher temperatures and 
lower densities moves the ionization zones for hydrogen and helium out beyond the surface of 
the upper main sequence stars, reducing the opacity of the matter just below the surface.  The 
reduced product κρ lowers the radiative temperature gradient and causes the envelopes of these 
stars to become radiative.  Thus, upper main sequence stars have convective cores and radiative 
envelopes, while lower main sequence stars such as the Sun have radiative cores and convective 
envelopes (except for the extremely low mass stars mentioned above).  It would appear that in 
moving up the main sequence, the convective core appears at about the same mass where the 
convective envelope disappears – just above 1 M☉.

Main Sequence Lifetimes
We may estimate the lifetimes (τ) of main sequence stars much as we did for the Sun in 

Chapter 10, using a modified nuclear time scale (note: τ is not an optical depth):

Eq. 12.22 

� 

τ ≈ Mefcc
2

L
  where fc is the core fraction and e is the reaction efficiency

With solar values this gives a lifetime of about 10 billion years.
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From Figure 12.8, we note a strong correlation between mass and main sequence luminosity, 
of the form L ≈ M α.  For most of the main sequence, the exponent has a value of α ≈ 9/2.5 =3.6.  
Then the mass dependence of the lifetime can be written as follows:

Eq. 12.23 

� 

τ ≈ 1M 2.6

We illustrate the procedure by using this relation to estimate the lifetime of an 11 M☉ star:

Eq. 12.24 τ ≈ 1112.6 ⋅10 billion years ≈ 20 million years

Stellar main sequence lifetimes decrease strongly  with mass, which is consistent with our 
earlier remarks about the mass dependence of the overall evolutionary  rates of stars.  In the next 
chapter we shall see that this trend continues, as we explore the behavior of stars beyond the 
main sequence.
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CHAPTER 13:  Sequels to the Main Sequence
Stars spend the majority  of their lifetimes as main sequence stars, where they convert 

hydrogen into helium in their cores.  Because most stars are composed primarily of hydrogen, 
this phase of stellar evolution is relatively  lengthy, but it does not last forever.  Eventually the 
star's core nuclear fuel must be exhausted, causing a readjustment in the structure of the star.  
This process can be repeated, with different fuels consumed by  stars of different masses, 
producing an interesting mix of structures that are still externally  identifiable as stars.  However, 
in many  cases these stars are only  temporary, and the ultimate structure resulting from stellar 
evolution will turn out  to be quite distinct from the stars we have been discussing.  It  is the 
variety of pathways that stars follow after leaving the main sequence that  is the focus of this 
chapter.

Each star is unique, with a different mass and composition, and thus a different evolution; 
even so, we should find that stars with similar masses and compositions should evolve in a 
similar manner.  Thus, we will find it convenient to group stars according to their masses.  This is 
commonly done, although there is not a strong consensus on how many groups to use, where to 
draw the boundaries of the groups, or how to label them.  We will choose to form five mass 
groups along the main sequence, as shown in Figure 13.1, which also correlates these groups 
with their main sequence spectral types.  The selected boundaries are approximate, and will vary 
from author to author; as we shall see, they are chosen to match naturally occurring changes in 
the structure and behavior of stars.

Figure 13.1:  Main sequence mass ranges
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The End of the Main Sequence
We begin by recalling that main sequence stars all perform core hydrogen fusion to obtain 

their energy, using two competing mechanisms to do so.  While the proton-proton chain is 

Pierce:  Notes on Stellar Astrophysics Chapter 13:  Sequels to the Main Sequence

238



dominant in the cooler stars, the CNO cycle is dominant in the hotter stars, with the transition 
occurring around 1.5 M☉ (early  F stars), as shown in Figure 13.2.  In our initial discussion we 
will examine the different characteristics of the upper and lower main sequence stars.

Figure 13.2:  Core hydrogen-burning mechanisms along the main sequence
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Lower Main Sequence (Minimal and Low Mass Stars)
Compared to stars higher up  the main sequence, the lower main sequence stars are less 

massive and have lower temperatures, both on the surface and in the core.  Because of this, their 
core energy production is dominated by the proton-proton chain.  Due to the relatively weak 
temperature dependence of the pp reaction rate, such stars will generate nuclear energy over a 
broad range of radii in the core, preventing steep temperature gradients and resulting in radiative 
cores.  With their lower surface temperatures and consequently greater opacities outside the core, 
they  will develop convective envelopes, which deepen with decreasing mass.  In the minimal 
mass stars, the convection zone extends all the way to the core, making these stars completely 
convective; around 1.5 M☉ the convective envelope is pushed to the stellar surface and 
disappears as ionization of the outer layers becomes complete.  These boundaries are indicated in 
the next figure.

Figure 13.3:  Convection vs. radiation along the main sequence
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The minimal mass main sequence stars (mid to late M stars) are special cases – for two 
reasons.  First, with the star being completely convective, all of the hydrogen is available to be 
circulated down into the center of the star where the nuclear reactions take place; at  the same 
time, the helium ash is redistributed throughout  the star.  Thus, by the end of the main sequence, 
the star will have converted nearly all of its hydrogen into helium, leaving a homogeneous star of 
essentially  pure helium.  Second, the main sequence lifetimes of such stars exceed the estimated 
age of the universe by factors of 4 or more; therefore, none of these stars should have left the 
main sequence as yet or produced interesting stellar creatures for us to attempt to explain.  The 
projected fates of these stars will be discussed later.
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The rest of the lower main sequence stars (F, G, K, and early M stars) have quite different 
futures in store for them.  These stars have radiative cores, which means that the helium ash that 
forms does not circulate but remains essentially in the place where it was created.  Throughout 
the main sequence phase, the helium mass fraction increases steadily throughout the core, but not 
uniformly.  Because the temperature is highest in the center of the core, the pp reaction rate is 
greatest there, and the helium builds up most rapidly  there.  Eventually the helium mass fraction 
rises to 1 at the center of the core, marking the end of the main sequence phase.

While on the main sequence, the star's properties are not exactly constant.  As hydrogen is 
converted to helium, the mean molecular weight in the core gradually  increases from about 0.6 to 
1.3 (with the central core regions leading the way); the effect of this action alone would be to 
lower the pressure by a factor of 2 (as P ≈ ρT/µ).  The star responds to this trend by slowly 
contracting the core, increasing the density  and temperature in order to maintain sufficient 
pressure to balance gravity.  The increased temperature and density  make the nuclear reactions 
run faster, causing the star's luminosity to increase gradually during the main sequence phase.  

Once hydrogen is finally  exhausted in the center of the core, nuclear reactions there cease.  
But nuclear energy is still being generated by the pp chain in a thick shell  around the inert 
helium ash, in the portion of the core where hydrogen has not  yet been eliminated.  Because the 
helium ash core supports no reactions at this time, it cools as energy flows outward from it, but it 
does not contract.  However, the loss of this energy source does produce gravitational contraction 
in the hydrogen layers above the helium core, and energy released by this contraction heats the 
thick hydrogen-burning shell, increasing the reaction rate at  its base.  The resulting increase in 
shell luminosity expands the outer core layers, cooling them and extinguishing the reactions 
there.  During this shell-narrowing phase, the star's luminosity continues to rise; ash from the 
shell burning increases the core mass, which strengthens the gravity acting on the shell, which 
compresses and heats the shell, which drives the reaction rate even higher in a spiraling process.  

The increasing flow of energy  powered by the rising shell luminosity produces a steeper 
temperature gradient and makes convection a more viable alternative in the region above the 
shell.  Accordingly, the existing convective envelope gradually dips deeper into the star.  
Convection expands the outer layers of the star, cooling them and increasing the opacity, which 
drives the convection even more.  Thus the star becomes both larger and cooler, as viewed from 
the outside.

On the inside, the core of the star contracts and heats as the hydrogen shell source deposits 
more helium ash onto it.  Due to the relatively high densities of low mass stars, their helium 
cores are partially  degenerate at  this stage, becoming increasingly degenerate as time goes on.  
Although not a big factor at this point, degeneracy will become rather important for these stars 
before very much longer.

In summary, at the end of the main sequence phase a typical low mass star exhausts its core 
hydrogen supply, transitions smoothly  to hydrogen shell burning, and begins to expand and cool 
as it moves off the main sequence toward the giant region of the HR diagram.  Meanwhile, the 
minimal mass stars spend an eternity  on the main sequence converting themselves entirely into 
helium.  What about the upper main sequence stars?
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Upper Main Sequence (Medium, High, and Maximal Mass Stars)
The upper main sequence stars have greater masses and higher temperatures, both on the 

surface and in the core.  Because of their higher temperatures, their core energy production is 
dominated by  the CNO cycle.  Due to the strong temperature dependence of the CNO reaction 
rate, such stars will have developed convective cores, and with their higher surface temperatures 
and consequently lower opacities outside the core, they  will have radiative envelopes, as 
indicated in Figure 13.3.

As hydrogen burns in the convective core of such a star, the helium ashes are mixed 
throughout the core, and fresh hydrogen is constantly  pumped to the center of the core where the 
reactions proceed most rapidly.  As in the case of the lower main sequence stars, the steady 
increase in the mean molecular weight must be offset by  a gradual contraction of the core, raising 
the core density and temperature while increasing the core reaction rate, and hence, the main 
sequence luminosity. 

Core hydrogen burning continues in this manner until the hydrogen nuclei are so diluted by 
helium nuclei that the reactions can no longer proceed – a limit that is reached when the 
hydrogen mass fraction in the core drops to about 5%.  The core then transitions from convective 
to isothermal as the final fraction of hydrogen is processed.  At this point, the star is a helium 
core surrounded by a hydrogen envelope, with no nuclear reactions taking place to generate 
energy.  Energy still flows toward the surface, cooling the central regions, reducing the pressure 
there, and initiating gravitational contraction.  

Contraction of the star releases gravitational energy, which raises the temperature of the  
hydrogen envelope just above the core – enough to ignite hydrogen burning in a thick shell 
around the core.  The helium ash produced by this shell is deposited onto the core, gradually 
increasing its mass, strengthening gravity in the shell, increasing the shell density and 
temperature and hence, the shell luminosity.  The energy released is used to expand the star, 
cooling the outer layers and moving the star to the right of the main sequence.

Figure 13.4:  Main sequence evolutionary tracks for 1, 1.5, 3, 6, and 15 M☉ stars
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Figure 13.4 illustrates the evolutionary tracks of stars while they are on the main sequence.  
The lowest point in each track marks the Zero Age Main Sequence  (ZAMS); from there, the 
stars with convective cores migrate up  to the right across the main sequence during the core 
hydrogen burning phase.  The subsequent jog to the left marks the core's adjustment from 
convective transfer to being essentially isothermal.  With its radiative core the 1 M☉ star avoids 
this adjustment and makes a smooth transition from core burning to shell burning.

Toward Helium Ignition
The next set of nuclear reactions available to the star involve helium burning, via the triple-

alpha process.  As we learned in Chapter 10, this sequence requires a temperature of about 100 
million K, a condition that is not met inside main sequence stars.  But as these stars evolve off 
the main sequence, their cores generally  contract and heat, providing the potential for triple-
alpha ignition.  As we might  expect, stars of different masses approach helium ignition in 
different ways.

The Minimal Mass Stars
The minimal mass main sequence stars (mid to late M  types, with M < 0.4 M☉) manage to 

convert themselves entirely  into helium, but they are ill-equipped to do very  much with it.  With 
their very  low masses, these stars have insufficient gravity to ever raise their temperatures to the 
helium ignition point.  Instead, they will only contract as best they can, gradually  becoming 
smaller, hotter, denser, and more degenerate.  We will ignore them for now and pick up  their 
story again when we discuss stellar endpoints.

The Maximal and High Mass Stars
The O and early to mid B stars (with M > 6 M☉) have no real problem with helium ignition.  

As they evolve off the main sequence, their helium cores contract and heat on the relatively rapid 
thermal time scale.  Because these stars are quite hot to begin with, their cores reach 100 million 
K with little effort.  And because the more massive stars are less dense as well, they reach the 
helium ignition temperature without becoming significantly degenerate.  The helium core ignites 
smoothly, and the ensuing triple-alpha process is controlled by  the stellar thermostat, much as 
core hydrogen burning was regulated on the main sequence.  The star makes a smooth transition 
to core helium burning, retaining its hydrogen burning shell in the process.  The maximal mass 
stars ignite helium as they move horizontally across the supergiant region; the mid B stars reach 
the right edge of the HR diagram before ignition occurs.

In the late B stars (with 6 M☉ > M > 3 M☉), the helium core that is present at the end of the 
main sequence is isothermal, and it does not begin an immediate contraction, being initially 
capable of supporting itself against the pressure exerted by the envelope.  However, contraction 
of the envelope does occur, causing ignition of a hydrogen shell at its base, and the subsequent 
addition of its helium ash gradually increases the core mass, eventually triggering core 
contraction.  This relatively rapid contraction then leads to the smooth ignition of helium as 
described above.

Pierce:  Notes on Stellar Astrophysics Chapter 13:  Sequels to the Main Sequence

242



The Medium and Low Mass Stars
The medium and low mass stars comprise the middle of the main sequence, from type A 

through early M  (with 3 M☉ > M > 0.4 M☉).  As they  evolve off the main sequence, these stars 
follow the basic plan, with a helium core, a hydrogen-burning shell, and an expanding hydrogen 
envelope.  Core density increases down the main sequence, and this results in increasingly 
degenerate cores for the low mass stars.  Additionally, as the stars move off the main sequence 
and their cores begin to contract, their rising densities further increase the degree of degeneracy 
such that helium ignition will ultimately occur in a significantly degenerate core.  Details of this 
event will be presented shortly, but first we must set the stage.

For each of these stars, evolution off the main sequence involves expansion and cooling of 
the envelope.  For the A and F stars this expansion occurs at  a nearly constant luminosity (as we 
saw above with the O and B stars), with the stars evolving to the right across the HR diagram, 
but for types G to early M the track is more vertical, with the stars expanding at a nearly constant 
temperature.  As can be seen in Figure 13.5, these post-main sequence tracks resemble the pre-
main sequence tracks of Figure 12.3, except of course that the direction is reversed.  While the 
pre-main sequence tracks involved contraction, with the gravitational energy released being 
stored as thermal energy in the star and also radiating away, the post-main sequence tracks 
involve expansion, with nuclear energy (from the shell source), gravitational energy (from the 
contracting core) and thermal energy (from the outer layers) being stored in the expanding 
envelope as gravitational potential energy and also supplying the luminosity.

Figure 13.5:  Post-main sequence evolution to helium ignition
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The envelope expansion is powered by the hydrogen shell source in each star, and the rate of 
energy generation in the shell is controlled by the gravitational contraction of the helium core, 
which in turn is fueled by helium ash from the shell.  The more massive the core, the stronger the 
gravitational forces acting on the shell, causing greater compression, higher shell temperatures, 
and increased shell luminosity, which increases the core mass even more.  As the envelope is 
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expanded by the increasing shell luminosity, the outer layers cool and become more opaque, 
making the envelope more susceptible to convection, which also contributes to the expansion.  

Degeneracy also factors into the expansion.  Degenerate matter is denser than non-degenerate 
matter, and the less massive stars in this group have denser cores while on the main sequence, 
giving them a head start on degeneracy.  All of these stellar cores become increasingly 
degenerate as the core contraction proceeds, and this leads to an even more compact core and 
even more rapid acceleration of the expansion process.

The effects of degeneracy are most notable in the low mass stars, where the expanding star 
soon confronts the forbidden region (introduced in the previous chapter) where stable stellar 
structures do not exist.  Because the star is prevented from using its increasing shell luminosity 
to expand and cool the outer layers by moving to the right on the HR diagram (the default 
expansion process), it is forced to turn upwards along the Hayashi track, becoming fully 
convective and increasing the luminosity of the star while maintaining a constant surface 
temperature.  This requires more energy than simple expansion and cooling would need, but with 
their more degenerate cores, the low mass stars are up to the challenge.  Of course with their 
nuclear fires burning at a lower rate than those of higher mass stars, the expansion of the low 
mass stars must proceed more slowly, but this is perfectly  consistent with our previous ideas 
about the effect of mass on the evolutionary rate. 

We now follow the medium and low mass stars as they move off the main sequence, 
expanding and cooling at nearly constant luminosities until they reach the Hayashi track.  (For 
the low mass stars, this horizontal track will be relatively short on the HR diagram, but it will 
require a considerably  longer time to traverse.)  At the Hayashi track, the horizontal track bends 
upward as the convective zone reaches deeper into the envelope and the continuing expansion 
begins to increase the stellar luminosity.  The star swells up  to several dozen times its main 
sequence radius, becoming the large, cool, luminous star known as a red giant; the nearly 
vertical track it follows on the HR diagram is known as the red giant branch (RGB).  

The Helium Flash
The helium core of the red giant continues to accumulate mass from the hydrogen shell 

source, becoming hotter, more compact, and more degenerate with time.  When the core 
temperature rises to 100 million K, the helium will ignite, once again giving the star a source of 
nuclear energy in the core.  However, for these stars, helium ignition occurs in a core that is 
degenerate – more so for the low mass stars.  As we saw in Chapter 11, a degenerate gas plays 
the game by different rules, particularly in terms of the pressure it exerts.  While ideal gas 
pressure is proportional to density  and temperature, the pressure in a completely  degenerate 
electron gas is determined solely by density and is essentially  independent of temperature:  small 
changes in temperature are not accompanied by corresponding changes in pressure.

Ignition of helium releases energy in the core, which is immediately used to increase the core 
temperature.  If the core were operating under ideal gas conditions, this increase in temperature 
would produce an increase in gas pressure in the core, which would expand the core, cooling the 
helium, and slowing the reactions; in short, the stellar thermostat would act to control the rate at 
which helium burning proceeds (ε↑ ⇒ T↑ ⇒ P↑ ⇒ R↑ ⇒  ρ↓ , T↓ ⇒  ε↓).
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However, in a degenerate core, an increase in temperature does not result in a significant 
pressure increase.  This is because energy added to the gas by  nuclear reactions can easily be 
absorbed by the ion gas – which is not degenerate; but because the pressure exerted by the ions is 
small compared to the pressure exerted by the degenerate electrons, the release of nuclear energy 
has no immediate effect on the pressure in the core.  The core does not expand, the temperature 
does not drop, and the reactions continue unchecked.  In fact, the extra energy absorbed by the 
ion gas makes the reactions run that much faster; rather than being slowed and controlled, the 
nuclear reactions are accelerated and unrestricted, producing a thermal runaway (ε↑   �� T↑).

One might suppose that this scenario could continue without bound, eventually destroying 
the star, but such is not the case.  This is because there are two sides to degeneracy – density and 
temperature.  Degeneracy involves combinations of high density and/or low temperature.  As a 
gas at  a certain temperature becomes denser, it  will become more degenerate; but if a gas at a 
certain density is heated, it will become less degenerate.  It  is this latter situation in which the 
newly ignited, degenerate helium core of a red giant star now finds itself.  As its nuclear 
reactions proceed at top speed, the energy they release serves to raise the core temperature rather 
dramatically, such that in short order, more high-momentum states are made available to the 
electrons, and the degeneracy  is lifted.  The core returns to an ideal gas state, the stellar 
thermostat is fixed, the crisis is over, and the star settles down to controlled burning of helium in 
its core.

Figure 13.6:  Transformation of the helium flash core luminosity spike into a surface luminosity 
change
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This event is brief, taking place on a time scale measured in minutes or seconds; it is referred 
to as the helium flash – the explosive ignition of helium in a degenerate stellar core.  At its peak 
rate, the core luminosity is of the same order of magnitude as the luminosity of an entire galaxy 
(about 1011 L☉).  We do not observe this spectacle in stars because they hide it  from our view, 
buried under a few tenths of an AU of stellar matter.  Even though the core may produce an 
extremely high luminosity pulse, it will be of very short  duration.  And the descendants of the 
photons that result from this pulse will arrive at the surface some millions of years later, with 
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arrival times distributed over an interval so broad that we are unlikely to be able to detect any 
significant change in the star's luminosity (see Figure 13.6).

As for evolutionary  tracks, we left our medium and low mass stars all ascending their 
respective red giant  branches and bound for helium ignition.  When the helium flash finally 
occurs – at a helium core mass of 0.45 M☉ – each star has several adjustments to make as a result 
of the new core energy source.  

First, some of the energy  released during the helium flash must be used to make the core non-
degenerate again, which means that it must expand back to a much lower density, storing some 
of its newly released nuclear energy as gravitational energy.  With a less dense core, the helium 
burning reactions will not proceed as fast as they did during the helium flash.  Similarly, 
expansion of the core also expands and cools the hydrogen-burning shell, slowing those reactions 
as well.  The result is an overall lowering of the star's luminosity, causing the evolutionary  track 
to reverse direction, moving back down the Hayashi track from the red giant tip, the peak in the 
luminosity where the helium flash occurred (L ≈ 1000 L☉). 

The return path down the Hayashi track is not quite the same as the ascent.  The star now has 
a non-degenerate core with its own nuclear energy source, and this causes the descending track 
to veer toward higher temperatures on the HR diagram as the envelope contraction heats the 
visible surface.  Stars with low metallicities tend to continue moving to the left across the HR 
diagram, halting at  points determined by  their individual metal contents and the masses of their 
envelopes.  These stars trace out the horizontal branch, which is characterized by core helium 
burning and hydrogen shell burning.  Stars with high metallicities tend to avoid this journey, 
instead forming a clump of stars at the right end of the horizontal branch that is appropriately 
labeled the red clump.  These core-helium-burning red clump  stars are giants with L ≈ 100 L☉ – 
larger than main sequence stars of the same temperature, but not as large as stars near the red 
giant tip.  Figure 13.7 illustrates this sequence of events.

Figure 13.7:  Post-main sequence evolution for 1 M☉ stars
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Higher mass stars also loop toward the blue after igniting helium in their cores, with the 
blueward extent of the loop increasing with greater mass, as shown in Figure 13.8.  (The 
maximal mass stars do not perform such loops.)  
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Figure 13.8:  Loops in the tracks of core helium-burning giants
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In stars of greater than 5 M☉ , these loops cross the instability strip on the HR diagram (the 
diagonal gray band in Figure 13.8).  In this region, the particular combination of stellar 
parameters makes stars unstable to radial pulsations, and they  become Cepheid variables.  but 
the first trip across the instability  strip (from the main sequence to the red giant branch) does not 
produce Cepheids, for reasons that will become clear below. 

The Schönberg-Chandrasekhar Limit
At the end of the main sequence phase, each star will have a helium core that  has just 

terminated its hydrogen fusion reactions.  The nature of this core and its subsequent behavior 
will vary with the mass of the star, as shown in Figure 13.9.

Figure 13.9:  Nature of the helium core at the end of the main sequence
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Due to the lack of a nuclear energy source inside it, the core will be unable to maintain a 
temperature gradient, and it will tend to become isothermal.  Such an isothermal core can support 
itself without contracting as long as it contains a relatively small fraction of the star's mass.  The 
upper limit on the mass of an isothermal core is known as the Schönberg-Chandrasekhar limit, 
which is given in terms of the mean molecular weights of the core and the envelope:

Eq. 13.1 

� 

MS−C = 0.37 µenv
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M*    (where M* is the mass of the entire star)
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Using µenv ≈ 0.6 and µcore ≈ 1.3, we find MS-C ≈ 0.08 M* .  An isothermal helium core with a 
mass less than about 8% of the mass of the star should be stable against contraction.  This 
condition is met by stars up to about 6 M☉ ; stars more massive than this (the O and early to mid 
B stars) will end the main sequence with cores that  exceed the Schönberg-Chandrasekhar limit, 
resulting in immediate contraction and heating (on a relatively rapid thermal time scale) until 
helium ignition temperature is reached.

For stars less than about 6 M☉, the termination of core hydrogen burning does not result in 
immediate contraction of the core, but it does initiate contraction of the envelope.  Heating of the 
base of the envelope establishes the hydrogen shell source around the isothermal helium core, 
and this shell begins to deposit its helium ash onto the core, increasing its mass.  When the core 
mass rises to exceed the Schönberg-Chandrasekhar limit, the core will contract and heat, again 
on the relatively rapid thermal time scale.  For late B stars, this contraction will be halted by the 
ignition of helium – which will occur far across the HR diagram in the red giant region.  

For medium mass stars, the rapid contraction will be slowed before ignition by increasing 
degeneracy, with the onset of degeneracy  occurring earlier in the contraction phase for lower 
masses.  Once degeneracy sets in, contraction will still continue, but it will proceed at the much 
slower nuclear time scale as reactions in the hydrogen shell source slowly increase the core mass.  
When helium ignition finally occurs, it will do so in a degenerate core, producing the helium 
flash, as previously discussed.

In low mass stars, the isothermal helium core will be partially degenerate when it forms at 
the end of the main sequence, and this degeneracy will prevent any sort of rapid contraction.  
Instead, the hydrogen shell source forms by contraction of the envelope (as above), and the core 
then contracts on its nuclear time scale as the shell burning gradually increases the core mass.

Figures 13.10 and 13.11 summarize these variations.

Figure 13.10:  Helium core contraction following the main sequence
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Figure 13.11:  Core helium ignition in post-main sequence stars
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The Hertzsprung Gap
Most of the effects of the Schönberg-Chandrasekhar limit are hidden from our view, buried 

deep  inside the star where only our computer models can detect them.  However, there is one 
effect that can be observed, in a manner of speaking.  The rapid contraction of the isothermal 
core that occurs in stars around 5 or 6 M☉ produces a correspondingly rapid evolution of these 
stars across the HR diagram from the main sequence to the red giant region.  Because this 
movement is comparatively swift, these stars spend very  little time in the intermediate stages, 
and the probability  of observing a star in this middle portion of the HR diagram will be very 
small.  

Such an underabundance of stars is actually noticed.   On an HR diagram with a sufficient 
number of field stars that cover a wide range of masses and ages, the main sequence will be 
apparent, as will the red giant branch and the red clump.  But between the upper main sequence 
and the red giant branch there will be a relative void, with hardly any stars, a region designated 
as the Hertzsprung gap (see Figure 13.12).  This gap  is bounded on the bottom by  low mass 
stars, which evolve more slowly toward the red giant  branch (due to their partially  degenerate 
cores), thus making them more likely to be observed.  

Figure 13.12:  The Hertzsprung gap
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As noted above, stars of 5 M☉ or greater do not become Cepheids as they cross the instability 
strip for the first time on their way to the red giant branch; this is because of their rapid evolution 
across the Hertzsprung gap.  Their later ventures across the instability  strip  are more gradual 
because the core helium-burning loop  proceeds on a nuclear time scale, giving us a much higher 
probability of observing stars in this unstable condition.

Evolutionary Time Scales
The Hertzsprung gap is due to relatively rapid evolution by stars through a particular 

structural phase.  This in turn is caused by evolution proceeding along different time scales, 
depending on the process involved.  For stars of a given mass, the nuclear time scale is generally 
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longest, with the Kelvin-Helmholtz (or thermal) time scale next; and for a given time scale, more 
massive stars evolve more rapidly.

So far, we can describe the evolution of most stars as a sequence of phases leading up to 
helium ignition.  These include pre-main sequence evolution of the protostar; main sequence; 
core adjustment (at the end of the main sequence); hydrogen burning in a thick shell; shell-
narrowing; and the red giant branch.  Most of these are illustrated in Figure 13.13.

Figure 13.13:  Typical post-main sequence evolutionary stages leading to helium ignition
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Figure 13.14 compares the length of time required for these different stages in stars of 
different masses. 

Figure 13.14:  Stellar evolution time intervals (prior to helium ignition) for stars of 1 to 15 M☉ 
(data from Iben (1967))

It is immediately obvious that for any given mass the longest time interval is the main 
sequence, by an order of magnitude or more.  The shortest is generally  the pre-main sequence 
phase, which is about two orders of magnitude less than the main sequence.  Post-main sequence 
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phases are also considerably shorter than the main sequence, which explains why the main 
sequence is the most populous group of stars.

The Approach to Carbon Burning
So far we have seen that mass sets limits on the nuclear reactions that a star may perform.  

Below 0.08 M☉ , hydrogen burning cannot be sustained, while below 0.4 M☉ , helium burning 
does not happen.  Those stars that can ignite helium (all except the minimal mass stars) will 
manage to produce a carbon core; whether a given star can successfully ignite this next nuclear 
fuel will depend, of course, on its mass.

The Medium and Low Mass Stars
We left the medium or low mass star on the horizontal branch (or in the red clump) where it 

was burning helium in its core and hydrogen in a shell.  This it can do for a reasonable length of 
time – on the order of 10% of its main sequence lifetime.  However, when the helium runs out, 
the star will again have to adjust its structure, causing another relocation on the HR diagram.  In 
some ways, the readjustment is similar to that performed at the end of the main sequence.

Termination of core helium burning leaves a core comprised of carbon and oxygen nuclei – 
the result of the triple-alpha process and alpha capture.  The ensuing gravitational contraction 
creates a helium-burning shell source just outside the carbon-oxygen core, and this shell, 
together with the hydrogen-burning shell above it, powers another expansion of the star.  As the 
star expands and cools, it again moves up and to the right on the HR diagram – in a manner 
reminiscent of the red giant branch – past  the red giant tip  and beyond, along a track designated 
as the asymptotic giant branch (AGB).  Figure 13.15 illustrates this feature.

Figure 13.15:  The asymptotic giant branch for 1 M☉  stars
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Along the AGB the core contracts and heats, in preparation for the next core fusion phase; 
however, just as some stars were unable to achieve core helium fusion, not all stars are destined 
to ignite the carbon-oxygen fuel now filling their cores.  The medium and low mass stars have 
insufficient gravity to heat their cores to carbon fusion temperature – around 600 million K.  
Their cores will contract and heat, becoming increasingly  degenerate in the process, while their 
envelopes expand and cool, swelling the stars to several hundred times their main sequence radii.  

Both the RGB and the AGB involve stars swelling up as their envelopes become more 
convective; both of these situations provide opportunities for the star to change its outward 
appearance, using a process known as dredge-up.
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Dredge-up
For the most  part, the compositions that stars exhibit in their atmospheres are essentially  the 

compositions they  had when they formed.  This is true even though stars are continually 
performing nuclear fusion in their central regions, turning light elements into heavier ones, for 
these reaction products are normally  contained within the stellar interior, hidden from our view.  
However, there is a mechanism that sometimes operates to distribute fusion products throughout 
the star; given the right  circumstances, convection can stir the stellar interior, lifting heavy 
elements to the surface and changing the surface abundances we observe.

We have already seen that the minimal mass stars are completely convective, and thus are 
able to mix helium throughout  the star while gradually  exhausting all the hydrogen.  In other 
main sequence stars, this does not happen, because the convective envelopes of low mass stars 
do not dip into their hydrogen-burning cores, and the convective zones of upper main sequence 
stars do not extend into their envelopes; their surface abundances are uncontaminated by the 
products of their core nuclear processes.  But the story is different for post-main sequence stars.

As stars evolve toward the red giant  branch, their convective envelopes deepen.  Around the 
base of the RGB, the convective envelope extends far enough into the star that it reaches material 
that was processed by the star's main sequence nuclear reactions.  The circulation of this material 
can measurably  alter the observed surface abundances of helium, carbon, and nitrogen in low 
mass stars, in a process known as first dredge-up.  In particular, the abundance of helium is 
increased (by both pp  and CNO), the ratio of carbon-12 to carbon-13 is decreased (by  the 
depletion of carbon-12 in the initial reaction of CNO), and the C/N ratio is reduced (by the 
conversion of carbon to nitrogen in the first portion of CNO).  In more massive stars, with a 
more extensive history of CNO processing, the O/N ratio may also be reduced.

A second dredge-up occurs for medium and high mass stars on the asymptotic giant branch, 
which have a carbon-oxygen core, a helium-burning shell at the base of a helium-rich zone, and a 
hydrogen-burning shell at  the base of the hydrogen-rich envelope.  Ignition of the helium shell 
source results in an increased luminosity  that expands and extinguishes the hydrogen-burning 
shell above it.  As the star expands up  the AGB, the convective envelope deepens and reaches the 
inactive hydrogen shell, again dredging the products of hydrogen burning up  to the surface.  
(Low mass stars do not participate in this process because the hydrogen shell is not extinguished 
at this point.)

The Maximal and High Mass Stars
The maximal and high mass stars will have sufficient gravity to heat their carbon cores to the 

ignition point.  However, just as degeneracy affected the ignition of helium in the lower mass 
stars, it will again be a factor in the less massive stars in this group.  

The boundary occurs at about 9 M☉ ; in the high mass stars, the core will be degenerate when 
carbon ignition temperature is reached.  This will result in the carbon detonation (also called 
the carbon flash) – the explosive ignition of a degenerate carbon core – an event that is 
analogous to the helium flash.  This explosion may tear the star apart, producing a supernova 
(see Chapter 14); alternatively, the star may be able to suppress the violence occurring in its core, 
repair its thermostat (by lifting the degeneracy), and move on to controlled core carbon burning.  

Pierce:  Notes on Stellar Astrophysics Chapter 13:  Sequels to the Main Sequence

252



But there is a third option, to be discussed in later sections, in which the high mass star manages 
to eject enough of its envelope mass that it  becomes incapable of achieving carbon ignition; such 
a star may then produce a planetary nebula (see Chapter 14).  As a result, carbon ignition in the 
high mass stars is a bit uncertain, as indicated by the dual gray arrows in Figure 13.16.

Figure 13.16:  Carbon ignition options for post-main sequence stars

0.1110100 M

KGFABO M

23 0.8 0.520

MinimalLowMediumHighMaximal

3smooth carbon ignition no carbon ignition9
carbon detonation

0.4 no carbon

(mass loss)

The maximal mass stars will perform smooth ignition of their carbon cores, avoiding the 
potential perils of the carbon detonation.  Core carbon burning will temporarily slow their drift 
across the supergiant region toward the red, but it will not  halt it.  For the time being, these stars 
will manage to continue the basic pattern of core contraction followed by  ignition of the next 
nuclear fuel, making increasingly heavier elements in the process.  The next section will discuss 
the general direction these reactions will take.

Advanced Nucleosynthesis
Before continuing our tale of stellar evolution, we must pause to consider additional nuclear 

reactions.  The pp chain and the CNO cycle covered the main sequence reactions, and the triple-
alpha process and alpha capture were added for the giant  branches, but now we are faced with 
carbon burning (and probably more).  By  what routes does further nucleosynthesis proceed?  
Lang (1980) provides the following sequences.

Alpha Capture
There are additional alpha capture reactions that can be run once oxygen nuclei have been 

produced:
  16O +4He →20Ne +γ +4.730 MeV
  20Ne +4He →24Mg +γ +9.317 MeV
  24Mg +4He →28Si +γ +9.981 MeV
  28Si +4He →32S +γ +6.948 MeV
  32S +4He →36Ar +γ +6.645 MeV
Alpha capture reactions with some of the CNO products can produce neutrons:
  13C +4He →16O +n +2.214 MeV
and  14N +4He →18F +γ +4.416 MeV
   18F →18O +e+ +ve

  18O +4He →21Ne +n – 0.699 MeV
and  18O +4He →22Ne +γ + 9.667 MeV
  22Ne +4He →25Mg +n – 0.481 MeV 
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Such reactions can occur in AGB stars, and the neutrons produced in these reactions can be 
used to form other nuclides by the process of neutron capture.

Neutron Capture and Beta Decay
Neutron capture involves the capture of neutrons by a nucleus, increasing the nucleon 

number (A → A +1) while keeping the atomic number (Z) constant:  

Eq. 13.2 Z
AX + n→ Z

A+1X + γ

This process creates heavier isotopes of a given element through successive neutron captures.  
However, some isotopes are unstable to beta decay, in which a neutron decays into a proton, 
creating an electron and a neutrino in the process:  

Eq. 13.3 

� 

Z
AX→Z+1

AX + e− +ν 

Under conditions of a weak neutron flux (such as found in AGB stars), neutron capture 
proceeds gradually until it produces an unstable isotope, which then decays.  Unstable isotopes 
will have sufficient time to decay before the next neutron encounter if the neutron capture rate is 
slower than the beta decay rate; therefore this is known as the s process.

We may illustrate the s process using an iron-56 seed nucleus to capture neutrons, eventually 
producing cobalt-59:

Eq. 13.4 56Fe → 57Fe → 58Fe → 59Fe → 59Co + β

This works up to 208Pb and 209Bi, beyond which no nuclei are sufficiently stable for neutron 
capture to operate.  Thus, no actinides are formed by the s process.

For certain neutron numbers (N = 28, 50, 82, 126), the neutron capture cross sections are 
relatively small; such nuclei are less likely to capture neutrons and are more likely to accumulate 
under s process conditions, producing local abundance peaks for certain isotopes such as 88Sr, 
138Ba, and 208Pb (which are observed in the solar system).  The dredge-up  process may bring 
these isotopes to the surface in AGB stars, where they can be observed, resulting in such groups 
as the barium stars. 

Under conditions of high neutron flux, the neutron capture rate will be more rapid than the 
beta decay rate, giving rise to the r process.  These two processes are depicted in Figure 13.17.

Figure 13.17:  Nucleosynthesis with the r and s processes; n = neutron capture and β = beta 
decay

 !

 !
 !

Z

N
 

!" !"!"!"!

 

!
 

!" !

 

!
 

! n

 

!

s

r

Pierce:  Notes on Stellar Astrophysics Chapter 13:  Sequels to the Main Sequence

254



The r process conditions are not normally found inside stars; but such high neutron fluxes 
can be achieved in supernova explosions,  which use endothermic reactions to produce the bulk 
of the elements beyond the iron peak:  selenium, bromine, krypton, rubidium, tellurium, iodine, 
xenon, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, 
lutecium, rhenium, osmium, iridium, platinum, gold, and uranium.

Also occurring in supernovae is the less prevalent p process – the capture of protons by 
various nuclei.  This is of course more difficult, due to the Coulomb repulsion.

Carbon Burning and Beyond
As already noted, helium burning and alpha capture produce primarily 12C and 16O.  These 

can be burned as follows.
For T6 ≈ 600 → 800, carbon burning occurs:

  12C +12C → 24Mg +γ +13.930 MeV
  12C +12C → 23Na +p +2.238 MeV
  12C +12C → 20Ne +4He +4.616 MeV
  12C +12C → 23Mg +n – 2.605 MeV
  12C +12C → 16O +24He – 0.114 MeV
Then for T6 ≈ 2000, oxygen burning occurs:

  16O +16O → 32S +γ +16.539 MeV
  16O +16O → 31P +p +7.676 MeV
  16O +16O → 31S +n +1.459 MeV
  16O +16O → 28Si +4He +9.593 MeV
  16O +16O → 24Mg +24He – 0.393 MeV
Products from the above reactions interact to form nuclides with mass numbers in the range 

from 16 to 28.
After carbon and oxygen burning, the most abundant nuclei are 32S, 28Si, and some 24Mg.  

Then photodisintegration occurs, leaving mostly 28Si:
  32S +γ → 31P +p – 8.864 MeV
  31P +γ → 30Si +p – 7.287 MeV
  30Si +γ → 29Si +n
  29Si +γ → 28Si +n
For T6 ≈ 3000, photodisintegration of 28Si occurs:

  28Si +γ → 27Al +p – 11.583 MeV
At sufficiently high temperatures, many of the previous photon-producing reactions can run 

in reverse as endothermic photodisintegrations.  At T6 ≈ 2000, the nuclei are approximately in 
equilibrium, and individual reaction rates become unimportant.  These equilibrium processes 
result in nuclei with mass numbers in the range of 28 to 60.  
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Obviously, the whole sequence of nucleosynthesis becomes rather complex for the most 
massive stars.  We present here a few summaries, to assist in grasping the overall picture.  Table 
13.1 gives the typical nuclear fuels and products associated with the principal burning stages.

Table 13.1:  Nuclear burning stages (adapted from Avrett (1976))
 Process Fuel Products T6 
 H burning H He 10 to 30
 He burning He C, O 100 to 200
 C burning C O, Ne, Na, Mg 600 to 800
 Ne burning Ne O, Mg 1500
 O burning O Mg to S 2000
 Si burning Mg to S ≈ Fe 3000
We recall from our discussion of the binding energy per nucleon that nuclear fusion is 

generally  less efficient  for heavier fuels.  Each new core fuel provides a diminishing amount of 
energy to supply  the star's luminosity; this is demonstrated by the calculated lifetimes of the 
different nuclear burning stages for a 25 M☉ star, as shown in Table 13.2.

Table 13.2:  Lifetimes of core burning stages for a 25 M☉ star (Seeds 2008, 214)

 Core Fuel Phase Lifetime
 H main sequence 7 million years
 He supergiant  500,000 years
 C supergiant  600 years
 O supergiant  6 months
 Si supergiant  1 day
The structure of such a star becomes rather complex.  In the maximal mass stars – the only 

ones capable of such advanced reactions – a composition gradient will be maintained, with 
progressively  heavier elements being found deeper inside the star.  A shell source will be 
established at the base of each layer, to transform fuel from above into ash in the next layer 
below.  Figure 13.18 provides a schematic diagram of the stellar interior at  this point, with the 
radial coordinate not drawn to scale.
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Figure 13.18:  Onion-skin diagram of a 25 M☉ star (Kippenhahn & Weigert 1990)
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As its core turns into iron, a crisis looms for the star, for iron marks an extreme value of the 
binding energy per nucleon.  Once iron-56 nuclei are formed, neither fusion nor fission can 
squeeze any more nuclear energy out of them; the ensuing core contraction will result in a 
supernova.  We are now ready to consider this – and other terminal phases of stellar evolution – 
in the next chapter.
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CHAPTER 14:  Evolutionary Endpoints
Stars are not  permanent objects; although they may exist relatively unchanged for billions of 

years, they do not last forever.  As expected, we will find that stars of different masses will have 
different ultimate fates.  We begin this chapter by reconnecting with the stars in our various mass 
groups.

Minimal Mass Stars
We left the minimal mass stars on the main sequence, where they were using their completely 

convective interiors to process their entire hydrogen supply into helium.  Once this has been 
accomplished, the star will be a naked helium core, with no hydrogen envelope surrounding it.  
The star must then contract, but there will be no hydrogen shell to ignite, no hydrogen envelope 
to expand, and no insulating blanket of hydrogen to retain the core's heat.  Furthermore, the star's 
contraction will not provide enough gravitational energy to produce helium ignition 
temperatures, and thus no nuclear reactions will ensue.  Instead the star will slowly contract and 
heat, becoming denser and increasingly degenerate.  

Such a small, hot, dense, degenerate star will be a helium white dwarf – but its formation is 
still far in the future, due to the extreme length of its progenitor's main sequence phase.  Because 
we observe white dwarfs in the Galaxy today, we may conclude that there must be another, faster 
way to produce them.  We will postpone further discussion of these objects until we find this 
pathway.

Medium and Low Mass Stars
When we left  the medium and low mass stars, they  were ascending the AGB in a futile 

attempt to ignite their carbon cores.  Their expansion at this stage is powered by a helium-
burning shell just outside the core and a hydrogen-burning shell farther out.  

As the star expands up the AGB, the helium shell narrows and becomes unstable, resulting in 
helium shell flashes (or thermal pulses).  These occur when the shell temperature rises, 
increasing the shell luminosity, which expands and cools the shell.  (Recall that the reaction rate 
for the triple-alpha process is highly sensitive to temperature:  ε3α ≈ T 40.)  Repeated shell flashes 
encourage mass loss, and the envelope mass is further reduced by the shell nuclear reactions.  At 
high luminosities, the envelope becomes unstable to radial pulsations, producing a long-period 
variable star – an LPV, or Mira variable.  During this phase, even more of the envelope mass is 
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lost as the pulsations elevate the atmosphere, increasing the density at large radii and enhancing 
the formation of dust grains.  Radiation pressure accelerates the dust grains outward, and drag 
forces carry the gas particles along too, resulting in relatively high mass loss rates.

While the solar wind produces mass loss rates of ≈10–14 to 10–13M☉/year, LPV mass loss rates 

are estimated at  about 10–6M☉/year.  In some cases a superwind develops, with mass loss rates 
on the order of 10–4M☉/year.  These higher rates result in a rapid thinning of the envelope.  

Eventually the envelope mass becomes so low – about 1% of the star's mass – that it no 
longer hides the central regions of the star from view.  As these deeper, hotter layers of the star 
are gradually revealed, the radius of the radiating surface decreases and the effective temperature 
increases.  The luminosity remains essentially  constant  during this phase as it is produced by the  
helium-burning shell, which lies just above the core.  The star thus evolves horizontally  to the 
left across the HR diagram.  When the effective temperature reaches about 30,000 K, sufficient 
ultraviolet radiation is emitted to ionize and excite atoms in the previously ejected envelope 
material, which in turn radiates visible light that we observe as a planetary nebula.  

The central star (CS) in a planetary nebula – also known as a planetary nebula nucleus 
(PNN) – consists of the carbon-oxygen core of the former AGB star, surrounded by  its helium-
burning shell.  As the envelope expands away from the core, it reduces the pressure on the core.  
The core then expands slightly, causing the remaining envelope just above the shell to contract 
and producing a separation between the envelope and the central star.  The helium burning shell 
supplies the central star's luminosity; when the shell's helium supply is finally  exhausted, the 
luminosity drops as the star cools, contracts, and becomes increasingly  degenerate, gradually 
becoming a white dwarf.  This provides an alternative method for producing white dwarfs that is 
considerably faster than waiting for minimal mass stars to move off the main sequence.

Figure 14.1:  Evolution from AGB to white dwarf
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Figure 14.1 depicts the evolutionary track of a star as it transforms itself from a huge, red, 
pulsating AGB star to a small, hot, white dwarf.  The downward turn just past the main sequence 
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occurs when the central star loses its helium-burning shell.  Much of the pathway is dashed to 
indicate that we do not observe many stars in the intervening stages along this track; when we 
view an AGB star, we are looking at its envelope, but then we transition rapidly to direct 
observation of its core as the envelope becomes optically thin.

Planetary Nebulae

Figure 14.2:  The Ring Nebula – a planetary nebula

Planetary nebulae result from the ejection of envelope matter by an AGB star and the 
subsequent illumination of this matter by the hot central star that remains.  The spectrum of a 
planetary  nebula consists of emission lines from atoms that have been excited and/or ionized by 
ultraviolet radiation from the central star.  In most of the better known objects, the nebulae are 
fairly circular in profile, resembling planets (hence the name).  But the majority of planetary 
nebulae (≈ 80%) do not exhibit  the spherical symmetry implied by the more circular nebulae, 
such as the Ring Nebula, shown in Figure 14.2.  The cause of the variation in shapes of planetary 
nebulae is still being investigated; it may  very well involve binary stars, magnetic fields, 
planetary disks, etc.

Planetary nebulae are reasonably common; there are about 1500 known, with an estimated 
15,000 to 30,000 in the Galaxy.  As judged by  their kinematics and distribution in the Galaxy, 
planetary  nebulae are old Population I objects.  They are found mostly near the Galactic plane 
and concentrated toward the Galactic center; they are usually  not found in star clusters, but they 
have have been found in a few globular clusters.

Planetary nebulae are transient objects, with the envelope gradually expanding and merging 
with the ISM on a time scale of ten thousand years or so; expansion velocities are typically about 
20 km/s.  The illumination of the nebula is produced by  fluorescence, powered by ultraviolet 
radiation from the central star.  Initial radii are about 0.1 pc, but when the radius of the nebula 
exceeds about  0.7 pc, the low density of the gas renders it essentially invisible.  Alternatively, 
once the central star has cooled sufficiently, its radiation will be unable to keep the nebula 
ionized, and the recombined gas will cease its emissions.  In any event, the planetary nebula 
phase is relatively brief.

About 25 planetary nebulae are estimated to by  formed each year in the Galaxy.  They are 
produced by stars covering a range of about 1 to 9 M☉ ; these produce central stars ranging from 
0.6 to 1.1 M☉ , with lower mass stars producing less massive central stars.  (The break between 
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nebula and central star comes at  the composition discontinuity  at the bottom of the hydrogen-rich 
envelope.)  Because core helium burning results in carbon-oxygen cores of about 0.5 M☉ , it 
would appear that the less massive AGB stars in this range have their envelopes ejected by 
thermal pulses and/or a superwind before the helium-burning shell can add much mass onto the 
core.  The high mass stars in this range must either eject a substantial fraction of their mass 
before the carbon core ignites or survive the carbon detonation and then eject the envelope, 
leaving an oxygen-neon-magnesium core to form the central star.

Central stars of planetary nebulae are among the hottest stars known, with effective 
temperatures up to about 200,000 K.  Their luminosities range up to 100,000 L☉ , and their radii 
extend down to 0.01 R☉.  Central stars are the contracting, degenerate cores of former AGB stars, 
on their way to becoming white dwarfs.

White Dwarfs
White dwarfs occupy the lower left corner of the HR diagram.  They are hot  stars, with 

typical effective temperatures of 10,000 K or more, but they have very  low luminosities, on the 
order of 10–3 → 10–4 L☉.  These values imply that white dwarfs are very small – only  about 0.01 
R☉, or about the size of the Earth.  Masses – obtained through spectroscopic determination of 
surface gravities – average around 0.6 M☉ ; white dwarfs in binary systems range up to about 1 
M☉.  Inserting a solar mass or so into a volume the size of the Earth produces a density of about a 
million g/cc – far denser than normal matter.  We may conclude that white dwarfs must be 
degenerate.

 The white dwarf is made up of a degenerate electron gas and a normal ion gas, the latter 
usually  comprised of carbon and oxygen nuclei.  A small gaseous fringe exists on the the surface, 
where the gravitational field is extremely intense – on the order of 300,000 g's.  An estimate of 
the atmospheric scale height seems to indicate that a plane-parallel atmosphere would be a 
suitable approximation in this case:

Eq. 14.1 H = ℜT
µg

=
8.3e7( ) 10000( )
2 300000( ) 980( ) = 1400cm = 14 meters ≈ 2 ×10−6R*

The degeneracy  in a white dwarf is essentially  complete, meaning that, up to the Fermi 
momentum, all available phase space cells are filled, with no filled cells beyond.  The question is 
whether or not relativistic degeneracy occurs, and this depends on the white dwarf mass.  Higher 
mass white dwarfs have stronger gravity, and they require higher pressure in order to achieve 
equilibrium.  In a degenerate gas, higher pressure can only be achieved by  higher density, as 
temperature is not a factor; therefore, high mass white dwarfs must  have higher densities – the 
reverse of main sequence stars.

From Chapter 11 we have the following relations for a completely degenerate electron gas, 
using relativistic formulae.  Higher densities correspond to higher values of x, f (x), and Pe .

Eq. 11.50 

� 

Pe = π me
4c5

3h3
f (x)
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Eq. 11.51 
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f x( ) = x 2x2 − 3( ) x2 +1+ 3sinh−1 x
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For low mass, low density white dwarfs, the Fermi momentum will be low and the electrons 
will be non-relativistic.  The pressure they  exert  is given by Equation 11.19 (which can be 
obtained by approximating f (x) for x → 0 :  the non-relativistic limit):

Eq. 11.19 
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This is a polytrope with γ = 5/3  ⇒   n = 1.5.  We may then apply the mass-radius relation  for 
polytropes (Equation 9.73): 

Eq. 14.2 
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And for µe = 2, we find the mass-radius relation for non-relativistic white dwarfs:

Eq. 14.5 
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We note immediately that radius decreases weakly  with mass; more massive white dwarfs are 
smaller!  (Note also that this will be true for any polytrope for which 1 < n < 3.)  

Now as we build white dwarfs of greater mass, they become smaller, and obviously denser.  
As the density  increases, the Fermi momentum increases and the higher momentum states 
become relativistic.  We should then investigate the case of relativistic complete degeneracy, 
which will occur in a high mass white dwarf.

For high mass, high density white dwarfs, the Fermi momentum will be high and the 
electrons will be relativistic.  The pressure they exert is then given by Equation 11.53 (which can 
be obtained by approximating f (x) for x → ∞ :  the relativistic limit):

Eq. 11.53 
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This is a polytrope with γ = 4/3  ⇒   n = 3.  We again apply the mass-radius relation:

Eq. 14.6 
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Eq. 14.8 
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For µe = 2.0013, we find M/M☉ = 1.4495 (or 1.45 or 1.4, depending on the constants and 
precision used).  This is a bit different from the non-relativistic relation obtained above, as it says 
nothing about the radius.  Rather, it gives an upper limit on the mass in the highly relativistic 
case.

As we increase the white dwarf mass, the increasing density forces the electrons into higher 
energy states, and they become more strongly relativistic; as a result, the mass-radius relation – 
as shown in Figure 14.3 – gradually changes from the non-relativistic equation (black dots)  to 
reach the relativistic mass limit at R = 0.  This limit is known as the Chandrasekhar limit; white 
dwarfs cannot be made any more massive than this – about 1.4 M☉ .

Figure 14.3:  The mass-radius relation for white dwarfs (solar units)
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Being degenerate, a white dwarf, once formed, cannot contract further by itself.  Being 
relatively cool inside, a white dwarf cannot do any nuclear fusion to generate energy  from the 
fuel it has at hand.  But white dwarfs do radiate and thus must draw on a source of energy to 
supply their luminosity; this source is the thermal energy  of the nuclei, which are not  degenerate.  
Their heat is transferred to the surface efficiently by  conduction, keeping the interior of the star 
essentially  isothermal.  At  the surface is a thin photosphere in which the electron gas is ideal, 
rather than degenerate; radiative transfer through this layer controls the heat flow and determines 
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the luminosity.  The white dwarf cools without contracting, moving along a line of constant 
radius on the HR diagram.  When it has cooled enough, it will no longer radiate any  significant 
visible light; at this point it will be called a black dwarf.

We can estimate the white dwarf cooling time scale by dividing the star's thermal energy 
content (E = 3/2 ℜT/µi ergs/g) by its luminosity.  (Here T is the temperature of the isothermal 
interior, rather than the effective temperature of the photosphere.)  Inserting typical values (T ≈ 
107, M ≈ 0.6M☉, L ≈ 10–3L☉, µi ≈ 12) we find a time scale on the order of a billion years.

Eq. 14.9 tcool =
3
2
ℜT
µi

M
L

= 3
2

8.3e7( ) 1e7( )
12( ) 3.16e7 s / yr( )( )

0.6 2e33( )
0.001 4e33( ) ≈ 1 billion yrs

More detailed calculations that link the interior temperature to the luminosity  can be utilized 
to give an expression for the time required for a white dwarf to cool to the luminosity indicated 
(from a much higher luminosity); results for typical white dwarf masses are shown in Figure 
14.4.

Eq. 14.10 
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Figure 14.4:  White dwarf cooling times
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Clearly, the initial phases of cooling are quite rapid, but the process slows down as the 
luminosity drops.  This should result in white dwarfs of a given mass collecting at  lower 
luminosities, depending of course on the time of formation of the original star.  As we have seen 
above, a white dwarf of 0.6 M☉ should develop from a main sequence star of about 1 M☉.  Such a 
star would have a main sequence lifetime of about 10 billion years, followed by a giant  phase of 
another billion years or so, leaving no more than about 1 or 2 billion years for the white dwarf 
cooling time.  The majority  of white dwarfs have cooled to effective temperatures that  are 
somewhat greater than the Sun's; the age of the Galaxy places observable limits on the extent of 
cooling that has been achieved by normal white dwarf evolution.

The above discussion focuses on isolated white dwarfs; but white dwarfs do exist in binary 
systems, and their evolution can proceed along quite different lines, as will be discussed later.

High Mass Stars
The high mass stars have several options available at this point, as outlined here:  
• A high mass AGB star may  shed enough of its envelope mass that it becomes incapable of 

igniting carbon; in this case it should produce a planetary  nebula with a carbon-oxygen 
central star, as described above.

• Or, the high mass star may ignite its degenerate carbon-oxygen core in a carbon detonation.
- This may destroy the star in a supernova explosion (see Supernovae, below).
- Or, the star may survive the event and perform core carbon burning.

– It may then eject  enough envelope mass to produce a planetary nebula 
with an oxygen-neon-magnesium central star (see Planetary Nebulae, 
above).

Obviously there is some degree of uncertainty here as to the exact  pathway for a star in this 
mass range.  Whether the stars share this same uncertainty is not clear.

Maximal Mass Stars
Stars of maximal mass manage to ignite carbon – and subsequent nuclear fuels – without 

their cores becoming degenerate.  Once they  develop the complex structure depicted in Figure 
13.18, with multiple layers of different compositions and multiple shell sources in between, the 
next step is the production of iron nuclei by  silicon burning in the core.  As we have already 
seen, iron is incapable of yielding any nuclear energy through either fusion or fission, and this 
will create problems for the star.  

Silicon burning creates an iron core and gradually increases its mass; when the core becomes 
massive enough, it  contracts, and as its density increases, the core becomes more degenerate.  
When the degenerate core mass exceeds the Chandrasekhar limit, the contraction becomes even 
more rapid.  The gravitational energy that is then released – which previously would have heated 
the core and ignited the next fuel – instead is applied to endothermic reactions.  

In the first stages, electron capture by heavy  nuclei reduces the number of electrons and 
hence, the degenerate electron pressure.

 Z
AX + e– → Z–1

AX +ve

Then iron-56 nuclei are converted into alpha particles and neutrons.
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 ∼ 100 MeV + 56Fe →13 4He + 4n
Despite the increase in the number of particles, this does little to increase pressure in the 

core, and the contraction accelerates to a collapse in which the alpha particles are split apart into 
protons and neutrons, absorbing still more energy:

 ∼ 24 MeV + 4He → 2p+ + 2n
Once again, because the reactions are absorbing, rather than releasing energy, the core is not 

stabilized.  Instead it implodes, crushing the protons and electrons together to form neutrons and 
neutrinos in another electron capture reaction:

 p++ e– + energy → n + v
(Note:  The core does not exactly pause at each step to consider its options; rather the whole 

core collapse occurs on a time scale of a second or less.)
The core is not stabilized until the neutron gas thus produced becomes degenerate, at a 

density  approaching 1015 g/cc and a radius of about 10 km.  For stellar masses up to about 20 M☉, 
this core will become a neutron star; for higher mass stars, the core will be massive enough to 
form a black hole.  The rest of the star – above the core – is expelled in a powerful explosion 
known as a supernova. 

Supernovae
Supernovae are impressive events, with several different activities occurring in a relatively 

brief period of time.  They  are initiated by the core collapse described above, which releases 
sufficient energy to expel the outer layers of the star, create numerous heavy elements by 
endothermic reactions, light a temporary beacon to alert the local universe, send out shock waves 
to trigger star formation in surrounding interstellar clouds, and continue to illuminate the 
expelled layers for thousands of years to come, tantalizing those who missed the show.

The transformation of the core implosion into a supernova explosion appears to involve two 
mechanisms:  in-falling material rebounds off the hard, dense core of neutrons formed in the 
reactions described above; and neutrinos created in the above reactions are absorbed by the 
overlying layers of the star, which are heated and blown off.  (Recall that neutrino cross sections 
increase with the neutrino energy.)

To estimate the energy involved, we start with an iron core of about 1.4 M☉ and a radius of 
about 0.01 R☉ and then compress it to a 1.4 M☉ neutron star with a radius of 10 km.  The 
potential energy released is as follows:

Eq. 14.11 ΔΩ ≈ GM 2 1
RNS

− 1
Rc

⎛
⎝⎜

⎞
⎠⎟
= 6.7e− 8( ) 1.4( )2 2e33( )2 1

1e6
− 1
7e8

⎛
⎝⎜

⎞
⎠⎟ = 5.2 ×10

53ergs

The nuclear energy released in converting iron into elementary particles can be estimated by 
multiplying the binding fraction for iron (~ 8.8 MeV) by the number of nucleons:

Eq. 14.12 ΔEnuc ≈ fB
Mc

mH

= 8.8e6(eV ) 1.6e−12ergs eV( )1.4 2e33( )
1.67e− 24

≈ 2.4 ×1052 ergs
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The potential energy released is roughly an order of magnitude greater than the nuclear 
energy absorbed; thus there is considerable energy available to be used for other projects.

Supernova peak luminosities are on the order of 30 billion L☉, but they  decline on a time 
scale of weeks to months.  The radiated energy  required can thus be estimated, and it appears to 
be easily within the energy budget:

Eq. 14.13 ΔErad ≈ L Δt = 3 ×1010 (3.8 ×1033) ×107 ≈ 1.1 ×1051 ergs

Ejection of the envelope mass (on the order of 10 M☉) requires that it achieve escape velocity 
from the core's original radius:

Eq. 14.14 ve =
2GMc

Rc
≈

2 6.7e− 8( ) 1.4( ) 2e33( )
7e8

≈ 7300 km/s

We can then estimate the kinetic energy needed to launch the envelope:

Eq. 14.15 KE ≈  1/2 Mve
2 ≈ 1/2 (10)(2e33)(7300e5) ≈ 5.3 ×1051 ergs

At this point we have created a core of neutrons, expelled the envelope, lit up  the explosion, 
and still accounted for less than 10% of the gravitational energy made available by the collapsing 
core.  If we further assume the production of about 1 M☉ of r-process elements with a net 
binding energy change of 1 MeV per nucleon, we may  estimate this portion of the energy budget 
as follows:

Eq. 14.16 ΔEheavy ≈ ΔfB
Mheavy

mH

= 1e6(eV) 1.6e−12 ergs eV( ) 2e33
1.67e− 24

≈ 1.9 ×1051ergs

 As this accounts for less than 1%  of the total energy available, it would seem that there will 
be plenty of energy to make heavy elements, even if more massive stars are considered. 

These conclusions may be reasonable, but only up to a point; much of the energy  released in 
a supernova will be carried away by the huge numbers of neutrinos that are created when protons 
are converted to neutrons.  As noted, some of these neutrinos will participate in the expulsion of 
the envelope, but a large fraction of them will escape directly from the dying star, carrying with 
them a significant amount of the collapsing core's energy.  As even more massive stars are 
exploded, the core masses will increase and more energy-draining neutrinos will be created.  At 
the same time, the energy needed to expel the envelope from the more massive core will rise to 
the point where the energy budget  cannot be met.  Under these conditions – perhaps found in 
stars above 40 M☉ – the star will no longer be able to afford a supernova, and it  will produce a 
black hole without first blowing up.

Our opportunities to study supernovae using modern instrumentation have been somewhat 
limited, as there has not been a supernova visible in our Galaxy  for over 400 years.  The most 
famous of the historical supernovae occurred in the year 1054 when the Chinese observed a 
'guest star' in the constellation Taurus; it is estimated to have reached an apparent magnitude of  
–7 and was visible to the naked eye for two years.  When we point our telescopes today at the 
same position in the sky, we find the Crab Nebula.  Edwin Hubble was the first to link these two 
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observations, allowing us to identify the Crab as a supernova remnant – the expelled envelope 
of an exploded star.

Figure 14.5:  The Crab Nebula – a supernova remnant

The Crab lies at  a distance of about 2000 pc and has a radius of about 1.7 pc.  Its expansion 
velocity  has been measured by comparing images taken several years apart; after nearly 1000 
years of expansion, this velocity has slowed to about 1500 km/s.  The Crab is observed across 
the entire range of the spectrum, from gamma rays to radio wavelengths, and it is a source of 
synchrotron radiation (caused by high-energy electrons spiraling in a magnetic field).  Its 
progenitor star is believed to have had a mass in the range of 8 to 12 M☉, based on the 
composition of the nebula.

Other supernova remnants can be found around the Galaxy; like the planetary nebulae, they 
are transient objects, and we have no observations of their progenitors.  Supernovae are observed 
in other galaxies, but their great distances place limits on the observational data we can obtain 
from them.  What astronomers would like is a supernova that occurs relatively nearby – but not 
so close that it would present a hazard to our existence!

In 1987, a supernova occurred in the Large Magellanic Cloud – safely located about 52 kpc 
away.  SN1987A was noticed almost immediately  and observations have been made 
continuously since then.  In fact, neutrinos from the event were detected on Earth a few hours 
before the rising luminosity made the explosion visible; this is in agreement with theory, which 
predicts just such a delay due to the time required to expand the outer layers of the star, 
providing the dramatic increase in its luminosity.  This event marked the first time that  a 
supernova progenitor could be identified; its mass is estimated at about 18 M☉ .

Supernovae are not all alike; they  are classified according to their observational 
characteristics (spectra and light curves).  The basic division is simple:  

• Type I supernovae exhibit no hydrogen lines.
• Type II supernovae show strong hydrogen lines in emission.
Type I can be further subdivided:
• Type Ia has a strong Si II absorption line at 6150 Å near maximum light.
• Type Ib has a strong He I line at 5876 Å and no Si II absorption around 6150 Å.
• Type Ic has weak or no helium lines and no Si II absorption around 6150 Å.
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Both Types I and II have rise times (time to reach maximum light) of several days and they 
remain near maximum for several days.  Type Ia supernovae are about ten times more luminous 
than Type II.  Types Ib and Ic are less luminous than Type II, but have light curves similar to 
Type II.

Figure 14.6:  Typical light curve for Type Ia supernovae
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The Type Ia light curve shows a rapid decline for about 30 days, then an approximately 
exponential decline (L ≈ Loe–t/τ ) with a time constant (τ) of about 70 days, as shown in Figure 
14.6.  This is the same for essentially all Type Ia supernovae.

Type II light curves show a decline that varies from one supernova to the next.  In general 
there is an initial decline of about 25 days, then a level portion of 50 to 100 days, followed by a 
further rapid decline.

Type Ia supernovae are found in all galaxies, even those with no evidence of recent star 
formation.  They occur at the same rate in both spiral and elliptical galaxies.  Type II supernovae 
are found only in spiral galaxies, near sites of recent star formation (the spiral arms).

From these observations, we may conclude that Type II supernovae result  from young, 
Population I stars with masses greater than about 8 to 10 M☉ (our maximal mass stars).  On the 
other hand, Type Ia supernovae are produced by  old, Population II stars of relatively low mass.  
Types Ib and Ic are judged to be similar to Type II.  The following theoretical mechanisms have 
been proposed to explain the observational differences:

• A Type II supernova results from the collapse of the degenerate iron core of a massive star, 
as described above.

• A Type Ib supernova results from the collapse of the degenerate iron core of a massive star 
that has previously shed its hydrogen envelope.

• A Type Ic supernova results from the collapse of the degenerate iron core of a massive star 
that has previously shed its hydrogen and helium envelopes (a naked core collapse).

Core collapse requires a core mass in excess of 1.4 M☉ while production of an iron core 
requires a star larger than 8 M☉.  Thus, the above supernovae mark the ends of the maximal mass 
stars, but they are unattainable by less massive stars.
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A Type Ia supernova involves mass transfer onto a white dwarf in a close binary system.  
This situation can result when the primary – the more massive star in the original binary  – 
evolves first and produces a white dwarf.  The secondary star then evolves off the main 
sequence, becoming a red giant; as it expands to fill its Roche lobe, the secondary  begins to 
transfer matter onto the white dwarf, as shown in Figure 14.7.  Two different scenarios are 
possible, depending on the white dwarf's mass.

If the white dwarf's mass is near the Chandrasekhar limit, the higher pressure and 
temperature caused by the increasing mass ignites carbon in the center.  Because the white dwarf 
is degenerate, this results in a thermal runaway that blows the star apart as a Type Ia supernova.  
Because this ignition always occurs at a mass near 1.4 M☉, the peak luminosity  is fairly 
predictable, making these supernovae very useful as distance indicators.

Figure 14.7:  Mass transfer in a close binary system
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primary 
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If the white dwarf mass is significantly lower than the Chandrasekhar limit, the result will be 
somewhat less dramatic.  In this case, the accumulation of hydrogen-rich matter on the white 
dwarf surface will hinder radiative cooling of the star, increasing the temperature at the base of 
the hydrogen layer.  When hydrogen fusion temperature is reached, the accumulated surface 
layer ignites, blowing itself off the star in an explosion known as a nova (more specifically, a 
classical nova).  This sequence may repeat on time scales of about 104 years as the evolving star 
continues to transfer matter to the white dwarf, but we have no observational records to support 
this prediction.  Luminosities of novae are significantly  lower than those for Type Ia supernovae, 
by a factor of about 10–5.

Related objects include the recurrent novae, which erupt at intervals of 10 to 100 years.  
These may  occur on more massive white dwarfs, which have stronger surface gravity and can 
attain hydrogen ignition temperature after a shorter mass transfer period.  Continued mass 
transfer may eventually increase the white dwarf mass to near the Chandrasekhar limit, when it 
will ignite the carbon in the core as a Type Ia supernova.

Classical novae and recurrent novae are two representatives of a group  of systems called 
cataclysmic variables (CV's).  All of these involve a close binary  system containing a white 
dwarf that is the target of mass transfer from the larger companion.
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Neutron Stars
As we saw above, the collapse of the iron core of a star can result in a neutron star – a sphere 

of degenerate neutrons at nuclear density, about 1014 to 1015 g/cc.  A neutron star with a radius of 
10 km and a mass of 1.4 M☉ would have a density of 6.7 ×1014 g/cc.  In reality, the neutron star's 
structure is fairly  complex, with an atmosphere and a solid crust  that still contain nuclei and 
electrons, but these gradually transform into degenerate neutrons deeper in the star.

Neutron stars are theoretical beasts; they were predicted in 1934, over 30 years before they 
were discovered in the sky.  These extremely compact objects are so tiny that their low 
luminosities make them quite difficult  to observe:  a 10-km neutron star would need to maintain 
an effective temperature of 1.5 million K in order to produce a luminosity equal to the Sun's – a 
feat that some young neutron stars may be able to accomplish.  But fortunately for us, the 
neutron star has special properties that aid in its detection.

A neutron star should have a very strong magnetic field, due to the collapse of the core that 
initiates the supernova.  The magnetic field lines follow the charged particles and wind up being 
rather densely packed together in the neutron star.  (It is actually  the neutrons star's small 
collection of protons and electrons – on the order of 10% of the neutron total – that are 
responsible for producing the currents that generate the magnetic field.)  While the Earth's 
surface magnetic field strength is about 0.5 gauss, and the Sun's is around 1 gauss, the neutron 
star's field strength is on the order of 1012 gauss.  This field is so strong as to constrain the 
radiation from the neutron star, beaming it along the axis of the magnetic field.

A neutron star should also be spinning fairly rapidly, due to conservation of angular 
momentum.  If no external torques are applied to the core during the collapse phase, then the 
angular momentum of the neutron star should be equal to the angular momentum of the iron core 
before the collapse.  The greater the reduction in the core radius, the greater the resulting spin 
rate.

A solid, uniform sphere has a moment of inertia I = 2/5 MR2; the angular momentum is then  
Iω = 2/5 MR2ω, where ω is the spin rate.  Applying conservation of angular momentum across the 
collapse, we find R2ω=Ro

2ωo or P =Po(R/Ro)
2, where P is the period and the subscripts indicate 

initial values (before the collapse).  Assuming initial values of Ro = 0.01 R☉ = 7×108 cm and Po = 

5 days = 4.32×105 s , and a neutron star radius of 10 km = 106 cm, we calculate a spin period on 
the order of a second:

Eq. 14.17 P = Po
R
Ro

⎛
⎝⎜

⎞
⎠⎟

2

= 4.32e5( ) 1e6
7e8

⎛
⎝⎜

⎞
⎠⎟
2

= 0.88 s

Pulsars
This predicted combination of a strong magnetic field and a high spin rate is what led to the 

identification of neutron stars as the likely  causes of pulsars, which were discovered in 1967.  
Pulsars revealed themselves by emitting pulsed radio signals with very  regular periods on the 
order of a second.  At first labeled LGM's (for Little Green Men), the pulsars were observations 
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in need of a good astrophysical explanation.  There are only a few ways to generate such pulses:  
pulsation, rotation, and revolution are the principal choices, and of these, rotation seems most 
likely for such short periods.

Of course a rapidly rotating body will require a large centripetal acceleration at its equator, 
and this must be supplied by the force that holds the body together.  In the case of most 
astrophysical objects, this force will be gravity, which depends on the mass and radius of the 
object.  We can then estimate the minimum spin period for a spherical body  of mass M and 
radius R by equating the gravitational acceleration at the equator to the centripetal acceleration:

Eq. 14.18 

� 

GM
R2

=ω2R ⇒ P = 2π
ω

= 2π R3

GM

We now explore some possible candidates, to see what types of objects might produce these 
periods.  For the Sun, R = 7 ×1010 and M = 2 ×1033, giving P = 104 s = 2.8 hours.  Obviously, the 
pulsars are not normal stars; something more compact, with stronger gravity is needed.

For a white dwarf, R = 7 ×108 and M = 2 ×1033 gives P = 10 seconds.  While this value 
approaches the general neighborhood of the pulsar periods, it  is still too high.  We need an object 
even more compact than a white dwarf.

For a neutron star, R = 106 and M = 2.8 ×1033 gives P = 4.6 ×10–4 seconds.  This result  is 
completely satisfactory; it is also compatible with observations of the millisecond pulsars (see 
below).

The periods of pulsars are thus covered by rapidly  rotating neutron stars; shorter pulsar 
periods than predicted by our estimate of 0.88 seconds could be achieved by a more rapidly 
spinning iron core or perhaps by a stationary accretion shock instability (SASI), an acoustic 
wave that may develop during the collapse, depositing matter and angular momentum onto the 
forming neutron star.

The actual pulses are then explained by incorporating the magnetic field and its beamed 
radiation.  If the magnetic field axis is not aligned with the rotational axis, the beams will sweep 
around the sky similar to a searchlight, sending pulses of radiation to observers in their paths.  
Thus, the only pulsars we see are the ones that point their beams at us during some time in their 
rotation; but each pulsar has two beams, aimed in approximately opposite directions, that can 
provide reasonable coverage of the sky.

The first pulsar discovered was PSR B1919+21, with a period of 1.337 seconds and a pulse 
width of 0.04 seconds.  The best known pulsar, with a period of 0.033 seconds, resides in the 
Crab Nebula; it pulses at many different wavelengths, including visible light, in which the star 
can be seen blinking off and on 30 times each second.  Pulsars are fairly common, with over 
1000 known in the Galaxy; periods range from about 5 seconds down to 1/600 second.  

Pulsar periods are observed to increase over time.  This should occur as the spinning neutron 
star gradually converts some of its rotational kinetic energy into radiation.  Younger pulsars – 
such as the Crab – should have relatively short periods.

The very shortest periods are attributed to pulsars in close binary systems in which matter 
and angular momentum are transferred from the companion onto the neutron star, increasing the 
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spin rate; these are the millisecond pulsars, which have periods in the 1 to 10 millisecond range.  
In some systems, mass transfer can coat the neutron star with a layer of hydrogen and helium, 
which heats and ignites, producing an x-ray burster – a scenario reminiscent of a nova.

Formation of a pulsar/neutron star requires the collapse of the degenerate iron core in a 
massive star.  This occurs when the mass of the degenerate core exceeds the Chandrasekhar limit, 
about 1.4 M☉ .  However, in extremely massive stars, the iron core can grow significantly larger, 
with a somewhat different result.

Black Holes
In stars greater than about 20 M☉ , the iron core grows to more than 3 M☉ – the estimated 

upper limit on the mass of a neutron star.  When the core eventually  contracts, it has enough 
gravity to overwhelm not only the degenerate electron pressure that supports white dwarfs, but 
also the degenerate neutron pressure that supports neutron stars.  At  this point there is no known 
structure that can successfully oppose gravitational collapse, and the core mass will compress 
itself into a point, producing an entity known as a black hole.

We will not attempt a detailed explanation of black holes as that would involve the theory  of 
general relativity, which will not be presented here.  Instead, we will note a few of the basic 
characteristics of black holes, to distinguish them from neutron stars and white dwarfs.

A black hole gets its name from the fact that it  does not radiate light – or any other 
electromagnetic radiation.  This is because the black hole mass has been compressed so much 
that its escape velocity is greater than the speed of light.  The escape velocity is given by the 
standard formula:

Eq. 14.19 ve =
2GM
R

Equating this velocity to the speed of light, we find the limiting value known as the 
Schwarzschild radius Rs :

Eq. 14.20 

� 

Rs = 2GM
c2

The Schwarzschild radius defines a spherical surface called the event horizon; a mass 
compressed to within its event horizon will be effectively invisible, as no photons will be able to 
escape from it.  Events taking place within this surface are 'over our horizon' and thus not visible 
to us.  

The Schwarzschild radius is proportional to the mass of the object; more massive objects 
have larger event horizons.  For the Earth, Rs ≈ 1 cm; for the Sun, Rs ≈ 3 km; and at the 3 M☉ 
limit for neutron stars, Rs ≈ 9 km, which is the same order of magnitude as the neutron star 
radius.  Thus, it does not seem totally implausible that a massive core might collapse to this size.

In stars up to about 40 M☉, the core collapse to a black hole will be accompanied by  a 
supernova explosion, but for stars greater than 40 M☉ , no supernova will occur.  Instead, it is 
believed that the remaining matter will collapse into the black hole.
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Thus, the most massive stars should produce black holes of a few solar masses as they wrap 
up their careers, but unless these objects happen to exist  in binary  or multiple systems, we will 
have an extremely difficult time detecting them.  The vast majority  of stars will retire as white 
dwarfs.

Figure 14.8:  Endpoints of stellar evolution
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We now have a general picture of the reasons why stars evolve and the various objects they 
create in the process.  In the next chapter we will summarize these stellar stories and compare 
our predictions about stellar evolution with observations of actual groups of stars.
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CHAPTER 15:  Evolution Conclusions
Previous chapters have focused on assembling the physics necessary to model stars and 

predict their behavior.  In this chapter we will compare these predictions with observations of 
collections of real stars, to gauge whether our models are sufficiently detailed and accurate.

Stellar Stories
We begin by giving a brief summary of the evolution of stars in each of our five mass groups, 

to provide an unbroken story line for each.

Minimal Mass Stars:  Mid to Late M Stars 
Minimal mass stars (0.4 M☉ > M > 0.08 M☉) evolve very slowly to the main sequence.  Their 

low masses and gravities raise their cores to hydrogen fusion temperatures, but the stars retain 
relatively cool interiors.  The resulting high opacities produce convective transport throughout 
their interiors; this insures the stars will have extremely long main sequence lifetimes (on the 
order of 100 billion years) as they slowly  process all of their hydrogen to helium by the proton-
proton chain.  Following the main sequence their dense, degenerate cores will become even more 
degenerate as the stars contract to produce helium white dwarfs.  But none of these stars should 
have reached this stage as yet because the universe has not provided sufficient time, being only 
about 14 billion years old.

Low Mass Stars:  F, G, K, and Early M Stars
Low mass main sequence stars (1.5 M☉ > M > 0.4 M☉) generate energy  primarily by the pp 

chain, but the CNO cycle contributes equally in the earlier stars in this range.  In the later stars, 
the pp chain results in a radiative core, which becomes larger in the earlier stars.  The low 
interior temperatures and higher opacities produce an outer convective zone that shrinks with the 
higher temperatures of the earlier stars.  

At the end of the main sequence lifetime – on the order of 10 billion years – these stars ignite 
a hydrogen-burning shell around the core; the partially degenerate helium core contracts very 
slowly on a nuclear time scale as ash from the shell increases its mass.  As the core contracts and 
heats, the envelope expands and cools, pushing the star up the red giant branch.  When the 
degenerate core reaches helium ignition temperature, it ignites in the helium flash.  As the star 
recovers from this ignition event, its core expands, slowing the hydrogen shell reactions; this 
reduces the luminosity from its peak value at the red giant tip, and the star settles onto the 
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horizontal branch with a helium-burning core and a hydrogen-burning shell.  Metal-rich stars 
form the red clump while metal-poor stars extend the horizontal branch farther toward the blue.

When core helium is exhausted, the star returns to the red and ascends the asymptotic giant 
branch, with a carbon-oxygen core, a helium-burning shell, and a hydrogen-burning shell.  While 
on the AGB the star gradually  loses envelope mass through pulsations and/or a stellar wind, 
eventually revealing the hot stellar core.  The ejected envelope matter is bathed in ultraviolet 
radiation from the central star, causing it to radiate visible light as a planetary nebula; the central 
star gradually cools to become a carbon-oxygen white dwarf.

Medium Mass Stars:  A Stars
Medium mass main sequence stars (3 M☉ > M > 1.5 M☉) generate energy primarily by the 

CNO cycle, although the later stars have a significant pp contribution as well.  The CNO 
reactions produce a convective core while the higher stellar temperatures and resulting lower 
opacities create a radiative envelope.

After about 1 billion years on the main sequence, these stars ignite a hydrogen-burning shell 
around the isothermal helium core.  Addition of helium ash to the core initiates core contraction 
on the comparatively rapid thermal time scale; however, as the star evolves off the main 
sequence, its evolution rate slows, due to the increasingly degenerate helium core.  The 
degeneracy  continues to rise as the star ascends the RGB, igniting helium in a helium flash at the 
red giant tip before settling onto the horizontal branch.

The remaining story is the same as for the low mass stars, but  the evolution rate is faster.  
Helium burning produces a carbon core, which contracts, igniting a helium-burning shell interior 
to the existing hydrogen-burning shell.  The increased luminosity  generated by these shell 
sources drives the star up the asymptotic giant branch, where it  sheds some of its outer layers by 
way of an increased stellar wind and/or pulsations as a long-period variable star.  When the 
envelope has thinned sufficiently, the core becomes visible as a hot central star; its ultraviolet 
emissions are absorbed by the previously  ejected envelope layers, which emit visible radiation to 
produce a planetary nebula.  The central star cools and forms a carbon-oxygen white dwarf, 
while the nebula expands and thins, eventually merging with the interstellar medium.

High Mass Stars:  Mid to Late B Stars
The hot, high mass main sequence stars (9 M☉ > M > 3 M☉) obtain energy  by the CNO cycle 

and thus have convective cores and radiative envelopes; they evolve quickly, with main sequence 
lifetimes of about 100 million years.  Following this, they ignite hydrogen-burning shells while 
their helium cores contract rapidly on a thermal time scale.  This causes the stars to move swiftly 
across the Hertzsprung gap on the HR diagram to the giant branch, where they ignite helium 
smoothly in a relatively non-degenerate core.

During the core helium-burning phase, the stars follow tracks that  loop toward the blue on 
the HR diagram, with some existing as Cepheid variables for awhile.  Following the production 
of a carbon-oxygen core and ignition of a helium-burning shell, the high mass stars ascend the 
AGB, where they also lose mass from their envelopes.  Although they initially  have the mass 
necessary  to compress their cores to carbon ignition temperatures, most of them probably do not 
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attain this goal, due to significant loss of envelope mass.  These stars will produce planetary 
nebulae with carbon-oxygen white dwarfs.

The earlier stars in this range may  lose some mass but still manage to ignite their cores in a 
carbon detonation.  If sufficient mass loss continues during the core carbon-burning stage, these 
stars can produce planetary nebulae and oxygen-neon-magnesium white dwarfs.

Maximal Mass Stars:  O and Early B Stars
The maximal mass stars (M > 9 M☉) evolve very  quickly, existing on the main sequence for 

only 100,000 to 10 million years or so.  Following the main sequence, the helium core contracts 
immediately (on a thermal time scale) and ignites before moving very  far off the main sequence.  
Each new nuclear fuel is ignited without interference by degeneracy  as the star drifts across the 
HR diagram to the red.  These stars are so hot that they  have significant stellar winds on the main 
sequence and beyond, resulting in continual loss of mass from their envelopes.

The interior of the star processes increasingly heavier elements, eventually creating an iron 
core surrounded by multiple layers of different compositions.  The ensuing gravitational collapse 
of the core results in a supernova in most  cases, with the core forming a neutron star (and 
possible pulsar) in the later stars or a black hole in the more massive cases.  The supernova 
remnant enriches the interstellar medium with heavy elements processed in the stellar interior 
and during the explosion itself.  The most massive stars may  transform directly  into black holes, 
without any supernova phase.

Stellar Samples
Having described the evolution of stars – using primarily theoretical considerations – we 

would now like to determine how well these predictions correlate with actual stellar 
performance.  What types of stars do we observe, and what fraction of all stars make up each 
type?  The answers to these questions are complicated by several factors.

Time Scales
Stars evolve at different rates during their various stages of their existence.  This occurs 

because the physical processes that produce the various stages proceed on different time scales.  
This affects our observations because we are more likely to find stars in the stages in which they 
spend the most time – if these stages are indeed represented in the current stellar population.  
Further, these time scales also depend on mass, such that more massive stars evolve more rapidly 
through every phase, making the lower mass stars more likely to be available for observation.  
The mix of stars available for us to observe is thus a function of both time and mass.

We illustrate this dependence by considering the first two stages in a star's life:  the pre-main 
sequence and main sequence phases.  In each of these phases, the most massive stars evolve most 
rapidly, but because they are regulated by  thermal and nuclear time scales, respectively, the two 
phases differ in length by about two orders of magnitude.  Figure 15.1 shows the variation of 
pre-main sequence time with mass.

Pierce:  Notes on Stellar Astrophysics Chapter 15:  Evolution Conclusions

277



Figure 15.1:  Approximate pre-main sequence times (data from Iben (1967))
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The trend shown above continues on the main sequence.  Figure 15.2 shows approximate 
main sequence lifetimes, calculated using Equation 12.23 and an estimated lifetime of 10 billion 
years for a 1 M☉ star.  Note again that these times are typically about two orders of magnitude 
greater than the pre-main sequence times.

Figure 15.2:  Approximate main sequence lifetimes
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The Initial Mass Function
The next factor involves the distribution of stellar masses that  are manufactured during star 

formation.  The stellar initial mass function (Cox 2000) gives the relative number of stars 
formed per unit solar mass:

Eq. 15.1 ξ M( ) =
0.035M −1.3    for  0.08 ≤ M ≤ 0.50

0.019M −2.2    for  0.50 < M ≤ 1.00

0.019M −2.7    for  1.00 < M ≤ 100

⎧

⎨
⎪⎪

⎩
⎪
⎪

We illustrate this function by  calculating the number of stars formed for every one star with a 
mass of 50 M☉ , as shown in the next figure.   

Figure 15.3:  The initial mass function – scaled to one star of 50 M☉
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It is apparent that there are far more stars formed at the low end of the mass range; this – 
together with the more gradual evolution of less massive stars – should result in a greater number 
of these stars being observed.  But there is another factor to include.

Pierce:  Notes on Stellar Astrophysics Chapter 15:  Evolution Conclusions

278



Selection Effects
We must also keep in mind the relevant selection effects; stars with high luminosities are 

more readily detected at  large distances while those with very low luminosities will be 
essentially  invisible, unless they are quite nearby.  As lower luminosities are generally  associated 
with lower stellar masses, selection effects tend to work against the previously discussed factors.

The overall combination of factors involved will generally result in stars from either the 
minimal or maximal main sequence mass groups being underrepresented in our observational 
samples, unless we make a special effort to include them.  We may do this by limiting or 
expanding the volume of space from which we obtain our sample.

Observational Data
Our two principal variables in stellar evolution are the mass and the age of the star.  We have 

already examined the changes that occur in stars of a particular mass range as they age, but these 
predictions are difficult to compare with real stars simply  because stellar evolution normally 
progresses on extremely long time scales.  Another way to obtain a comparison would be to 
examine stars of a particular age, over a range of stellar masses.  Happily, this can be done.

To obtain our predictions, we may  set up computer models of stars over the full range of 
masses and then run each model for the same length of time.  The positions of the stars on an HR 
diagram will trace out an isochrone – the locus of stars of different masses that  are all the same 
age; by varying the evolution time of the models, we may obtain isochrones for different ages.  

From our calculated values for the pre-main sequence times and main sequence lifetimes, we 
can predict the approximate mass range that will populate the main sequence at any  given age.  
These results are shown in the next figure.

Figure 15.4:  Main sequence populations for different isochrones
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We now use this information to construct HR diagrams for a theoretical group  of stars at five 
different ages, sketching isochrones and adding giants, supergiants, etc. as needed.  Figure 15.5 
displays these results.

Explanations of these predictions are as follows:
At one million years, the main sequence is populated by stars in the approximate mass range 

from 35 to 4 M☉. The less massive protostars are still approaching the main sequence while the 
most massive stars have already lived out their main sequence lifetimes and moved on to the 
supergiant region.  The most massive of these will have produced black holes – which do not 
appear in the diagram.
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Figure 15.5:  HR diagrams for stars of different ages
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After 10 million years, the low and minimal mass protostars continue to move toward the 
main sequence.  Most of the maximal mass stars have left the main sequence to become 
supergiants, with the most massive of this group destroyed by supernovae.  The main sequence is 
populated by stars with masses from about 15 to 1.8 M☉ . 

By 100 million years, the lower main sequence is nearing completion, but the early to mid B 
stars have evolved off to the giant region; the Hertzsprung gap makes a clear distinction between 
the upper main sequence and the giants.  The main sequence mass range is now between about 6 
and 0.65 M☉ .  

In one billion years, the lower main sequence is essentially  filled while all of the high mass 
stars will have disappeared.  The more slowly evolving medium mass stars are seen moving off 
the main sequence and up the red giant branch in a nearly continuous band.  The main sequence 
masses now range approximately from 2.5 to 0.16 M☉ .

After 10 billion years of evolution even the very lowest mass stars will have arrived on the 
main sequence, but not many others will be left.  All stars more massive than the Sun will have 
evolved off the main sequence.  Stars around 1 M☉ will form the red giant branch and horizontal 
branch, with higher mass stars having moved on to their respective endpoints.
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In viewing these diagrams, we observe a continuous change over time in the positions of 
stars that are arriving at the main sequence and leaving the main sequence.  The former point is 
less easily  identified, for it involves stars of lower luminosity  and a less obvious break with the 
main sequence line.  The upper point (small arrows), where the most massive stars are moving 
off the main sequence to become giants or supergiants, is known as the turnoff point.  The 
farther down the main sequence we find the turnoff point, the older the group of stars will be.

All that remains is to find a group of stars that  are all the same age, plot an HR diagram for 
them, and compare the result with the calculated isochrones.

Color-Magnitude Diagrams
Fortunately, some of the stars are organized into such groups.  Because stars form in clusters, 

the stars within a given cluster should all have the same age.  Additionally, because such stars all 
lie at about the same distance from us, we can easily obtain relative luminosities for them by 
measuring their apparent magnitudes; and if the distance to the cluster is known, we may obtain 
absolute magnitudes.  Temperatures are most easily  measured by the color index – the difference 
between the B and V magnitudes.  Plotting the magnitude (either apparent or absolute) versus the 
color index produces a color-magnitude diagram (CMD) – essentially an HR diagram with 
observational parameters.  

A color-magnitude diagram is not quite the same as an HR diagram.  Absolute visual 
magnitude is not exactly  linear with luminosity (recall the bolometric correction), and color 
index is not linear with effective temperature (or log T either).  While this makes comparison of 
specific points on the two diagrams more difficult, it  does not greatly change the overall 
appearance of one with respect to the other.  We should be able to identify the same basic 
features on each diagram.

We now examine the color-magnitude diagrams of a few clusters.  Astronomers recognize 
two basic types of clusters:  globular and open (or galactic).  Examples are depicted in Figure 
15.6.

Figure 15.6:  (a) An open star cluster; (b) a globular star cluster

  a          b 
Open clusters typically contain a few hundred stars, while globular clusters may have a few 

hundred thousand.  The latter generally appear smaller in the sky (as shown above), but this is 
only because they lie at  much greater distances than most of the open clusters within reach of our 
telescopes.  The next two figures present color-magnitude diagrams for two open clusters of 
different ages.
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Figure 15.7:  Color-magnitude diagram for the open cluster NGC 2264 (adapted from Payne-
Gaposchkin (1979))
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Figure 15.7 is a sketch of the color-magnitude diagram of the open cluster NGC 2264.  The 
curve marks the main sequence – no longer a straight line as it was on the HR diagrams.  NGC 
2264 exhibits a main sequence populated only at the upper end; cooler stars still lie above the 
main sequence as they  approach it in the pre-main sequence phase.  NGC 2264 is thus a fairly 
young cluster, with a turnoff point somewhere above a magnitude of –3.  (For reference, the Sun 
would lie at a color index of about  0.6 and an absolute magnitude of about +5.  Few stars less 
luminous than this are plotted because only the brightest stars in the cluster were measured.)

Figure 15.8:  Color-magnitude diagram for the open cluster M45 – the Pleiades (adapted from 
Payne-Gaposchkin (1979))
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Figure 15.8 is a sketch of a color-magnitude diagram for the Pleiades, a well-known open 
cluster.  This cluster is close enough that many  less luminous stars are included, tracing out more 
of the main sequence.  With a turnoff point around magnitude +1, the Pleiades is older than  
NGC 2264.

In contrast to the open clusters, we now present a sketch of the color-magnitude diagram for 
a metal-rich globular cluster.  Figure 15.9 is actually made from a composite CMD of three such 
clusters:  47 Tuc, M71, and M69.  The turnoff point around magnitude +3.5 implies that these 
clusters are considerably older than the Pleiades.  New features include the subgiant and red 
giant branches just above the main sequence, with the short horizontal branch/red clump around 
MV = 0.  Extending upward to the right is the AGB; many of the coolest stars in this group are 
LPVs.

Figure 15.9:  Composite color-magnitude diagram for the metal-rich globular clusters 47 Tuc, 
M71, and M69 (adapted from Payne-Gaposchkin (1979))
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Figure 15.10 shows a sketch of the color-magnitude diagram for the globular cluster M5, 
which exhibits some noticeable differences from the previous diagram despite having a similar 
turnoff point.  

First, the main sequence is displaced toward the blue; this is due to the lower metal content of 
this cluster.  Second, there is no red clump evident; the horizontal branch extends much farther 
toward the blue, reaching beyond the main sequence.  This is again due to the lower metal 
content of M5.  

Third, there is a conspicuous gap in the horizontal branch around B–V = 0.3; this marks the 
location of the instability  strip, in which stars are unstable to pulsations.  The instability strip 
extends diagonally up to the right where it includes the two stars around MV = –3; these are 
Cepheid variables.  Horizontal branch stars found in this gap are RR Lyrae stars – short period 
pulsating variables.
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Figure 15.10:  Color-magnitude diagram for the globular cluster M5 (adapted from Payne-
Gaposchkin (1979))
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The various color-magnitude diagrams that have been obtained are in good agreement with 
the theoretical HR diagrams that have been generated.  This evidence is fairly comforting, and 
indicates that our general views of stellar evolution are on the right track.

It should be noted that no star cluster will ever produce a complete main sequence, even if 
selection effects could be overcome.  The problem is the wide range of evolution rates, which 
guarantees that the most massive stars will have moved off the main sequence long before the 
least massive stars ever arrive there.  In order to obtain a color-magnitude diagram with a 
relatively complete main sequence, we must include stars that have a suitably wide range of 
ages.

Figure 15.11 is an example of such a diagram.  It  is a sketch of a color-magnitude diagram 
made for nearby stars, with distances (measured by the Hipparcos satellite) less than 100 parsecs.  
It features a nearly complete main sequence with a well-developed giant branch and red clump, 
plus a few white dwarfs.  None of these stars are members of clusters; thus the diagram is not 
dominated by stars of any particular age.  As expected, the uppermost and lowermost ends of the 
main sequence are sparsely populated, due to the various sampling factors discussed previously.

Of course there are other complicating effects that we have not covered here.  For example, a 
large fraction of all stars exist in binary or multiple systems, where the evolution of one star can 
affect the evolution of its companions.  Mass transfer between stars in a close binary  can 
accelerate the evolution of the star receiving mass, while at the same time modifying the 
evolution of the donor star.  The presence of strong magnetic fields can further modify the 
manner in which mass is deposited on a star.  Compact objects – white dwarfs, neutron stars, 
black holes – in binary systems add other dimensions to stellar evolution, producing patterns of 
radiation not easily explained by standard stellar models.  And variable stars exist  with a whole 
assortment of amplitudes, periods, light curves, and mechanisms that  do not fit our calculated 
image of a normal star.  
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Figure 15.11:  Color-magnitude diagram for nearby stars (within 100 pc)
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Clearly there are other paths to follow, but they must extend beyond this body of notes.  By 
now the reader should have a reasonable grasp of the structure and evolution of normal stars; it  is 
hoped that  this background will provide pictures that can be extrapolated to more exotic species 
in the cosmic zoo.
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Constants
Values from NIST (2006):  ------------------------------------------------------------------
Speed of light c 2.99192458 ×1010 cm/s
Gravitational constant G 6.67428 ×10-8 dyne-cm2/g2 
Planck's constant h 6.62606896 ×10–27 erg-s
   = 4.13566733 ×10–15 eV-s
 ħ = h/2π 1.054571628 ×10–27 erg-s
   = 6.58211899 ×10–16 eV-s
Boltzmann's constant k 1.3806504 ×10–16 erg/K
   = 8.617343 ×10–5 eV/K
Stefan-Boltzmann constant σ = 2π5k4/15h3c2 5.670400 ×10–5 erg/s-cm2-K4 
Radiation pressure constant*  a = 4σ/c 7.565767 ×10–15 erg/cm3-K4

Wien's law constant λT 0.28977685 cm-K
Avogadro's number NA 6.02214179 ×1023 part/mole
Gas constant  ℜ = NA k 8.314472 ×107 erg/mole-K
Electron charge* e 4.80320427 ×10–10 esu
Electron volt eV 1.602176487 ×10–12 erg
Electron mass me 9.10938215 ×10–28 g
Proton mass mp 1.672621637 ×10–24 g
   = 1836.1526715 me

Neutron mass mn 1.674927211 ×10–24 g
Hydrogen atom mass* mH 1.673532551 ×10–24 g
Atomic mass unit * amu 1.660538782 ×10–24 g
   = 931.49402781 MeV/c2

Rydberg constant (for ∞ mass) R∞ = 2π2me e4/ch3 109737.31569 cm–1

Bohr radius ao = ħ2/e2me 0.52917720859 Å
*Calculated values                    

Values from Cox (2000):  -------------------------------------------------------------------
Tropical Year yr 3.155692519 ×107 s
Astronomical unit AU 1.4959787066 ×1013 cm
Parsec pc 3.0856775813 ×1018 cm
Solar mass M☉ 1.9891 ×1033 g
Solar radius R☉ 6.95508 ×1010 cm
Solar luminosity  L☉ 3.845 ×1033 erg/s
Solar effective temperature Te☉ 5779 K
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Solid Angle
First, consider a circle of radius R:
An arc of length s on the circumference of the circle subtends an angle θ 

(with vertex at the center).  The length s is as follows:
s = Rθ    (θ in radians)   ⇒     θ = s/R [1 radian = 180/π  degrees]

In general, s = R d ′θ
0

θ

∫  and for a full circle,   s = R d ′θ
0

2π

∫ = 2πR

–––––––––––––––––––––––––––––––––––––––––––––––––––––
Now consider a sphere of radius R:
A closed curve – not necessarily a circle, as shown – enclosing 

area A on the surface of the sphere subtends a solid angle Ω (or 
ω) (with vertex at the center of the sphere).  The area A is as 
follows:

A = R2Ω (Ω in steradians = radians2)  
 [1 steradian = (180/π)2 square degrees]

A = R2 sin ′θ d ′θ d ′φ
0

θ

∫0
φ

∫  and for the whole sphere, 

 A = R2 sinθ dθ dφ
0

π

∫0

2π

∫
Then A = 2πR2 sinθ dθ

0

π

∫ = 2πR2 − cosθ( 0

π = 4πR2

The solid angle of a sphere is 4π, and the solid angle 
of a hemisphere is 2π.

In general, Ω = A
R2

= sin ′θ d ′θ d ′φ
0

θ

∫0
φ

∫
––––––––––––––––––––––––––––––––––––––––
If the closed curve is a circle, we have a disk in the 

sky (such as the moon or a planet).  Pointing the z-
axis at the center of the disk gives the disk an 
angular radius θ.

The solid angle of this disk is then 

Ω = sin ′θ d ′θ dφ
0

θ

∫0

2π

∫ = 2π sin ′θ d ′θ
0

θ

∫ = 2π 1− cosθ( )
If the disk is small, cos θ ≈ 1– θ 2/2! can be used;

then Ω ≈ 2π 1− 1− θ
2

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = πθ 2 ≈ π

R
d

⎛
⎝⎜

⎞
⎠⎟
2

 where R is the disk radius 

and d is the distance to it.

Caution:  The angle θ is a general quantity and could be used for either angular radius or angular 
diameter in different problems.
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Now consider a sphere of radius R :

A closed curve – not necessarily a circle, as shown – enclosing area A  on 
the surface of the sphere subtends a solid angle !  (with vertex at the 
center of the sphere).  The area A  is as follows:

!
R

A

For a full sphere,

x

y

z

#

&

In general, 
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where R  is the disk radius and d  is the distance to it.
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INDEX
absorption coefficient  19-21, 83
absorption cross section  118
absorption edges  134-5
absorption spectrum  100
adiabatic law  171, 187
adiabatic temperature gradient  186, 188-9, 

230
allowed transition  73
alpha capture  197, 253
angular momentum  48, 60-5, 222, 271-2
astrophysical flux  15
asymptotic giant branch (AGB)  251, 259
atomic structure  46-75
atomic unit  55
average speed  144
azimuthal quantum number  61
Balmer jump/discontinuity  135-6
Balmer series  53-4, 135-6
band structure  110
barium stars  254
beta decay  254
binding energy  197
binding fraction  197, 266
black dwarf  264
black hole  266, 273
blackbody  25, 40, 100-2, 146-7, 150
blue loops  246-7
Bohr model  46
Bohr radius  55
Boltzmann equation  77
Boltzmann Hotel  78

Bose-Einstein distribution law  209
bosons  209
bound-bound absorption  133, 184
bound-free absorption  134, 184
Brackett series  53, 135
Bremsstrahlung  137
bright line spectrum  100
brightness temperature  146
brown dwarf  231
carbon burning  255
carbon detonation/flash  252
carbon ignition  252-3
cataclysmic variable  270
central star  259
Cepheid variables  247, 283
Chandrasekhar limit  263, 265, 270
classical nova  270
CNO cycle  195-6, 201, 230, 235-6, 239, 241, 

252-3, 275-6
collisional broadening  122
color index  281
color temperature  146
color-magnitude diagram (CMD)  281
column density  102, 131
complete degeneracy  211-4, 217-8
complete ionization  166
complex index of refraction  116
component  71
Compton scattering  139-40
Compton wavelength  139-40
continuous absorption  134
continuous spectrum  100-2
continuum  101-2, 104, 130, 135
controlling reaction  194, 196, 200
convection  38, 170-2, 186, 188-9, 229-31, 

236, 239-42, 244, 251-2, 258, 275-6
convolution  124
cooling time scale  264
core adjustment  242, 250
Crab Nebula  267-8, 272
cross section  20-1, 118, 124, 126-7, 134-5. 

137-41, 203-4, 254, 266
curve of growth  132
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damped harmonic oscillator  115
damping constant  115, 120
damping profile  117
dark line spectrum  100
de Broglie wavelength  48
degeneracy  207-21, 244-5, 252, 261-3
degeneracy parameter  210
dielectric constant  113-4
differential optical depth  22
dispersion profile  117
Doppler broadening  123
Doppler profile  123
Doppler shift  123, 128-9
doublet  65, 69, 73
dredge-up  108, 251-2, 254
dwarf  105, 107-8, 158
dynamic scale height  161
dynamic time scale  225
Eddington approximation  41-4, 156
Eddington limit  185
Eddington's flux – see Harvard flux
effective gravity  157
effective temperature  40, 43, 102-3, 147, 

230-1, 234-5, 259, 261, 265, 271, 281
eigenfunction  56
eigenvalue  56
Einstein coefficients  81-4, 119-20
electric dipole transition  72-4, 83
electric quadrupole transition  72-3, 83
electron configuration  64-5, 69, 71, 73-4, 76, 

79, 111
electron pressure  88-92, 132, 137, 151, 

154-5, 167, 208, 210, 213, 215-6, 218-9, 
265, 273

electron scattering  139, 184
electron shielding/screening factor  201
electronic transitions  51, 72, 75-6, 80, 

109-10, 115
elemental number abundance  152
Emden variables  173
emission coefficient  18, 83
emission spectrum  100
emittance – see outward flux

energy density  17-8, 81, 185
energy generation  189-204
energy transport  183-189
equation of charge conservation  153
equation of state  165, 170, 204-7, 214
equations of stellar structure  164-5, 183-4, 

186-9, 204
equilibrium constant  151
equivalent electrons  65-6, 69
equivalent width  130
escape velocity  266, 273
event horizon  273
excitation  76-7, 88, 90-1, 99, 136
excitation temperature  132, 146
excited state  65, 76-7, 79-80, 85, 89-90, 

121-2, 196
expansion velocity  260, 268
exponential integral  37
extended atmosphere  32-3, 103, 158, 161
Fermi energy  211
Fermi momentum  210-1
Fermi-Dirac distribution law  209
Fermi-Dirac functions  214, 219
fermions  209
first law of thermodynamics  171, 186
first zero  174
fission  191, 198, 257, 265
flux  14, 36-7
forbidden region  229, 244
forbidden transition  73-4
free-fall time scale  225
free-free absorption  137, 184
full width at half maximum (FWHM)  118
fusion  10, 191-3, 195, 198-9, 204-5, 228-32, 

235, 238, 247, 251-2, 256-7, 263, 265, 
270, 275

Gamow peak  200, 202
gas pressure  92, 144-5, 148, 150-1, 154, 165, 

167, 213, 216, 226, 244
Gaunt factor  119, 184
giant  105, 107-8, 158, 240, 246-7, 253, 265, 

276, 279-81, 284
globular cluster  281, 283-4
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gravitational contraction  189-91, 226-32, 
240-4, 248, 251

gravity  10, 101-3, 106, 148, 157, 164-5, 185, 
222, 224, 231, 240-2, 251-2, 261, 270, 
272-3

gray case  40, 43, 156-7
Grotrian diagram  73-5
ground state  64-5, 69-70, 73-4, 76-7, 79-80, 

85-91, 93, 121-2, 141
guillotine factor  184
halfwidth  117-8, 120, 122
Hamiltonian  55
Harvard flux  15
Harvard system  103
Hayashi track  229-30, 244, 246
helium flash  244-6, 248, 252, 275-6
helium ignition  242
helium shell flash  258
Hertzsprung gap  249, 280
Hertzsprung-Russell (HR) diagram  104-7, 

228-9, 240, 242-4, 246-9, 251, 259, 261, 
264, 276-7, 279-82, 284

high mass stars  238, 241-2, 252, 265, 276
Hjerting function  127
horizontal branch  246, 280, 283
Hund's rule  69
hydrostatic equilibrium  148, 156, 158, 164, 

170-2, 187, 190, 204, 226-7, 229, 231
ideal gas law  87, 145, 148-9, 165, 167, 169, 

171, 173, 179, 181-2, 186-7, 207, 213, 
216, 221, 228

index of refraction  54, 116
initial mass function  278
instability strip  247, 283
intensity  12
ion degeneracy  209
ionization  85-99, 102-3, 106, 132, 134, 137, 

139, 146, 149, 150-1, 160, 165-6, 226-8, 
236, 239

ionization energy  85, 90, 134, 137, 226
ionization temperature  146
ionization zone  236
isochrone  279

isothermal core  241-2, 247-9
isothermal gas sphere  181
isotropic  14-5, 17-9, 23, 36, 40-1, 86, 150, 

183
isotropic emission coefficient  19
Jeans criterion  223
Jeans length  223-5
Jeans mass  224
jj coupling  63
Kelvin-Helmholtz (see also thermal) time 

scale  190, 228, 250
kinetic temperature  76, 147
Kirchhoff's laws  100
Kramers' opacity  184
Ladenburg f value  119
Lane-Emden equation  172, 174, 176-8
level  50-1, 53, 55, 61-2, 65, 69-74, 76-85, 

88-91, 98-9, 106, 109-10, 112, 119-22, 
133-6, 146

limb darkening  43-5, 129
line  46, 63, 71, 100-7, 110, 112-133, 142, 

150, 260, 268
line broadening  105-6, 112, 120-4, 127-30, 

142
line formation  101
line profile  84, 112-132
line strength  98-9, 102-4, 131
linear model  167-70, 179-80
local thermodynamic equilibrium (LTE)  24, 

43, 154
long-period variable star (LPV)  107, 127-8, 

158, 160-1, 258-9, 276, 283
Lorentzian profile  117
low mass stars  238-40, 243, 248, 258, 275
lower main sequence  235-6, 239-40
LS coupling  63
luminosity class  106
Lyman series  53, 135
macroturbulence  127
magnetic dipole transition  72-3, 83
magnetic quantum number  61
main sequence  105-7, 158, 180, 185, 195, 

227-42, 250, 275-85
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main sequence lifetime  236, 240, 278
mass absorption coefficient  20-1
mass continuity  164, 167, 170, 172, 174, 

189, 204
mass defect  197
mass emission coefficient  19
mass fraction  149-50, 165, 192, 201, 240-1
mass loss  258-9, 277
mass transfer  269-70, 284
maximal mass stars  238, 241-2, 252, 265, 

277
Maxwellian velocity distribution  143, 145, 

199, 211
mean absorption coefficient  156
mean free path  20-1, 204
mean intensity  13, 38
mean kinetic energy  146
mean molecular weight  149, 154, 165-6, 213, 

216, 224, 240-1, 247
mean molecular weight per electron  166,  

213, 216
mean molecular weight per ion  216
mean optical depth  156
medium mass stars  238, 241, 243, 248, 258, 

276
microturbulence  127
millisecond pulsar  272-3
minimal mass stars  238-40, 242, 258, 275
model atmospheres  147-58
molecular spectra  104, 108-11
momentum flux  16, 144-5
most probable speed  123, 144
multi-electron atoms  62-75
multiplet  71, 73-4, 111
multiplicity  65-6, 69, 73
natural line profile  112-22
negative absorption  84
negative hydrogen ion  136-8
net flux  14
neutrinos  203, 266-7
neutron capture  254
neutron star  266, 271-3, 277, 284
non-equilibrium atmospheres  158

non-equivalent electrons  65-7, 111
normal optical depth  31
normal path length  31
nova  107, 270
nuclear reactions  191-204
nuclear time scale  192, 232, 236, 248-9, 275, 

277
nucleosynthesis  253
number density  20, 77-8, 85, 87-9, 93, 97, 

102, 131, 142-6, 148-51, 153, 165-6, 
204, 210

number fraction  150
oblique path length  31
oblique rays  30
occupation index  210-1, 218
opacity  21-2, 26, 45, 102, 130, 133-41, 

184-5, 189, 204-5, 225, 230, 236, 240
opacity sources  133-141, 184
open cluster  281-3
operator  56-7, 60, 73
optical depth  22-3, 27-9, 31-2, 34-6, 41, 43, 

45, 102, 156, 225
optically thin/thick  10, 23, 29-30, 38, 163
oscillator strength  119-20
outward flux  15
oxygen burning  255
p process  255
parity  71, 73-4
partial degeneracy  214-6, 218-9
partial pressure  87-8, 152-4, 212
particle velocity  10, 123, 142, 144, 147, 199, 

209
partition function  78-80, 88, 93-4, 96
Paschen series  53, 135
Pauli exclusion principle  62, 64-5, 207
Pfund series  53
phase space  207-9, 211, 261
photodisintegration  255
photosphere  38, 45, 101-2, 127, 156, 160, 

263-4
Planck function  25-6, 43, 83, 146-7, 209
plane-parallel atmosphere  32-4, 38, 261
planetary nebula  253, 259-60, 265
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planetary nebula nucleus (PNN)  259
polarization state  62
polytropes  170, 218, 227, 262-3
polytropic index  170-2, 175, 178-9, 181, 187, 

218, 227
polytropic law  170-3, 181, 183
post-main sequence evolution  238-257, 

275-7
pre-main sequence phase  229-37, 243, 250, 

277-8, 282
pressure broadening  122
principal quantum number  61, 63, 77
proton-proton chain  192-6, 231, 235, 238-9, 

275
protostar  226-32, 250, 279-80
pulsar  271-3
pure absorption  23-4
pure scattering  23
quantization of angular momentum  48
quantum mechanical model  55
quantum numbers  48, 51, 53, 55, 59, 61-3, 

65, 70-2, 77-8, 108, 119
quartet  65, 69
r process  254, 267
radial velocity  123-4, 127-9
radiation damping  122
radiation pressure  15-8, 36, 38, 42, 150-1, 

156-7, 169, 171, 185-6, 228, 259
radiative energy density  17-8, 81, 185
radiative equilibrium  38-40, 43, 148, 156-7, 

172, 188
radiative flux  14
radiative temperature gradient  183-5, 188-9, 

230, 236
radiative transfer  12-45, 156, 183-4, 188-9, 

263
radiative transfer equation  22, 183
Rayleigh scattering  140-1
Rayleigh-Jeans law  82
reaction rates  199-203
recurrent nova  270
red clump  246, 283-4
red giant  244-5, 248-9, 270

red giant branch (RGB)  244, 246-7, 249-52, 
275-6, 280, 283

red giant tip  246, 251, 275-6
reduced mass  46-7, 55
relativistic degeneracy  217-9
relaxation  160
reversing layer  101
root mean square (rms) speed  146
Rosseland mean absorption coefficient  184
rotational broadening  128-30
rotational transitions  109
rotational velocity  130
RR Lyrae stars  283
Russell-Saunders coupling  63
Rydberg constant  51, 55
Rydberg formula for hydrogen  52
s process  254
Saha equation  87-98, 103, 136, 146, 151-2, 

154-5, 165
saturated line  131
scale height  158, 160-1, 261
scattering  21, 23-4, 26, 133, 138-41, 184-5
Schönberg-Chandrasekhar limit  247-9
Schrödinger equation  56
Schwarzschild radius  273
secant method  155
selection effects  279
selection rules  72-3
separation of variables  57-8
shell  63-4, 69-70, 73-4
shell burning  240-4, 246, 248, 250-2, 256, 

258-61, 265, 275-6
shell-narrowing phase  240, 250
shock strength  160
shock wave  107, 127-8, 158-61, 226, 266
sinc function  178
singlet  65-6, 69, 74
solid angle  12
source function  22-6, 28-30, 36, 40-1, 43-5, 

102, 131, 183
specific heat (capacity) 171, 183
specific intensity  12
spectral classification/type  103
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spherical harmonics  60
spin  62-6, 69, 86, 136, 207, 209-10
spontaneous emission  81
spontaneous emission coefficient  18
standard model  172, 180-1
star formation  222-31
state  62-71, 73-4, 76-80
stationary accretion shock instability (SASI)  

272
statistical weight  55, 61-2, 66, 70, 77-82, 

85-6, 88-9, 92-5, 119, 123, 142
stellar atmosphere  10, 101, 142-63
stellar endpoints  258-74
stellar interior  10-1, 33, 38, 139, 149, 163-5, 

178, 184, 192, 204, 252, 256-8, 263-4, 
275, 277 163

stellar interior models  163-182
stellar spectra  100-111
stellar surface  10
stellar thermostat  232, 242, 244-5, 252
stimulated emission  81
strong degeneracy  219-20
supergiant  105, 107, 158, 242, 253, 256, 

279-81
supernova  252, 265-9
supernova remnant  267
superwind  259, 261
surface gravity  102-3, 106, 270
telluric lines  101
temperature  146-7
term  65-74, 79
thermal broadening  123-4
thermal equilibrium  189, 201, 204
thermal pulse  258, 261
thermal time scale  190-1, 228, 232, 242, 248, 

250, 276-7
thermodynamic equilibrium  24, 43, 76-99, 

154, 162
thick shell  240, 250
Thomson cross section  139-41, 204
Thomson scattering  139-40, 185

time scale  127, 160, 190-2, 225, 228, 232, 
236, 242, 245, 248-50, 260, 264, 266-7, 
270, 275-7, 279

transfer equation  21-3, 26-35, 38-40, 43, 183
triple-alpha process  196-7, 242, 251, 253, 

258
triplet  65-6, 69-70, 74
tunneling  199
turnoff point  281-3
uncertainty principle  12, 86, 207
upper main sequence  235-6, 239, 241
velocities  10, 85, 101, 113, 115, 123-4, 

127-30, 142-6, 159-60, 199, 209, 260, 
267-8, 273

velocity discontinuity  160
vibrational transitions  109
virial theorem  190, 227
Vogt-Russell theorem  205
Voigt function  124, 126
volume absorption coefficient  20
volume emission coefficient  18
wave equation  112
wave function  55-61, 71-3
wave velocity  113
weak degeneracy  220-1
white dwarf  105, 204, 213, 258-9, 261-5, 

270, 272-7, 284
Wien's displacement law  25
x-ray burster  273
zero age main sequence (ZAMS)  231, 242
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