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PREFACE
This book is based primarily on lecture notes for a two-semester sequence of courses at 

Minnesota State University, Mankato:  Stellar Astrophysics and Stellar Structure and Evolution.  
The courses, which were offered every  other year, were taken by astronomy majors during their 
junior or senior years; these students were expected to have completed the three-semester 
Calculus sequence, Differential Equations, the General Physics sequence, the first semester of 
Modern Physics, and the sophomore-level Astronomy and Astrophysics sequence.  Depending on 
the timing, students may or may  not have been exposed to upper-level courses in Mechanics, 
Electricity and Magnetism, and Quantum Mechanics.  Thus, some of this material would have 
been seen before, but normally not  in the depth presented here.  This course sequence was 
intended as part of the student's preparation for graduate study in astronomy or astrophysics, and 
it was expected that much of the material would be covered again at that time.

The focus of the book is on understanding the material in the courses, rather than just 
memorizing it.  Wherever possible, derivations of equations are presented, with sufficient 
intermediate steps to lead the reader safely through the mathematical maze.  In this way, the 
student will comprehend why and when approximations have been made and/or certain terms or 
factors have been ignored; this is important because it is necessary  to understand the limits of the 
equations being developed in order to properly apply them.  Additionally, it is useful for the 
student to be able to adapt existing equations to solve new problems.

Most of the material contained in this book has been covered by many other authors; this is 
not a completely  new set  of basic principles, equations, derivations, and results for use in 
understanding stars.   Rather, it is a somewhat different organization of the standard collection of 
material, based on the order in which it  is presented in the two courses involved.  Neither an 
atmospheres/interiors split nor a principles/applications division has been used to allocate 
material to the two courses or to partition the book; instead, the approach is to develop  and 
utilize topics as needed, such that the text flows smoothly  from chapter to chapter in a logical 
order.  In my  sequence of courses, the first semester covers Chapters 1 - 7, and the second covers 
Chapters 8 - 15.

As this is a course text, an effort has been made to keep the book as readable as possible for 
the student; as a result, there are relatively few references included.  Where appropriate, 
references are used to guide the reader to particular original sources – constants, data, models, 
etc. – but for the most part the story  is not liberally  referenced as most of the topics have already 
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been discussed in many other sources.  A list of references is provided at the end of the book, 
along with a reading list of books on the subject, for those needing another slant on the story.  

Many of the books used as references have been out of print for some time (which has 
provided much of the impetus for this project), but they  are still good sources of material, 
including numerous graphs, tables, and models.  A number of books from the reading list have 
been used as texts for these courses over the last 30 years or so, but finding a book with 
satisfactory content that is written at an appropriate level and is still in print has proven to be 
somewhat elusive of late.  It  is hoped that this text will serve as an adequate guide to basic stellar 
astrophysics for some time to come.
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CHAPTER 1:  Overview
To many astronomers, stars are points of light in the sky; these points may have measurable 

positions, velocities, magnitudes, colors, etc., but they are still just points.  To the astrophysicist, 
however, stars are huge balls of matter, with properties such as temperature, density, pressure, 
composition, etc. that vary  throughout the star and over time.  This book provides an introduction 
to the details of the structure, operation, and evolution of stars.

Most stars are immense balls of gaseous matter; these gases are discouraged from simply 
drifting away into space by the star's gravity, which attracts the matter toward the center of the 
star.  At the same time, they are prevented from all piling up at the center by the pressure within 
the star, which is supplied by both the matter and the radiation within the star.  This pressure is  
greatest at the center of the star, and we can say that the pressure gradient is generally negative.

Eq. 1.1  

� 

dP
dr

< 0

We shall find that the high pressure in a star is normally  produced as a result of high 
temperature, and thus the temperature gradient should also be generally negative.

Eq. 1.2  

� 

dT
dr

< 0

The high temperatures within a star serve several purposes:
• They maintain the matter in a gaseous state, usually a plasma of ions – nuclei and electrons.
• They  produce radiation that ultimately  escapes from the stellar surface as the star's 

luminosity.
• They  result in high particle velocities that smash nuclei together in the core of the star to 

perform nuclear fusion, releasing energy that migrates outward towards the surface, 
maintaining the high temperatures along the way.

In studying stars, astrophysicists have found it convenient to draw boundaries that divide a 
star into different regions.  The simplest boundary to understand is the stellar surface:  
everything inside the surface is part of the stellar interior, while the stellar gases that lie above 
the surface make up the stellar atmosphere.  The gases of the stellar atmosphere are reasonably 
transparent, or optically thin; the stellar interior is opaque, or optically thick.
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Nuclear energy is released in the interiors of stars and flows outward through their interiors 
and then their atmospheres.  As radiation passes through the matter in both regions, photons are 
emitted, absorbed, and re-emitted; the directions and/or the wavelengths of these re-emitted 
photons may be altered from their original states.  It is this process of radiative transfer that we 
will study first.

Later chapters will deal with the structure of the atom, excitation, ionization, the 
interpretation of stellar spectra, line profiles, and sources of opacity.  Once these basic ideas are 
in hand, they will be applied to the tasks of determining how stars are structured, how they 
function, and how they form, evolve, and die.
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CHAPTER 2:  Radiative Transfer
Radiation Terminology

The basic problem of radiative transfer involves the passage of radiation through matter.  As 
it does so, some of the radiation is absorbed, and some radiation is emitted.  The rate at which 
radiation is absorbed by matter will depend on the rate at  which radiation is incident on the 
matter – more radiation results in more absorption; the rate at which radiation is emitted will 
depend only slightly on the incident radiation.  The question is how the radiation changes as it 
passes through matter.

Before we can find an answer, we have to decide what property of the radiation we want to 
monitor.  There are several possibilities, and they all begin with a quantity  called the specific 
intensity, Iν .

Specific Intensity
Consider rays of light of intensity Iν , passing through a surface element of area ΔA, towards 

the observer at an angle θ to the normal (of the surface element), into solid angle* Δω, as shown 
in Figure 2.1.  

Figure 2.1:  A ray of light passing through a surface element ΔA into a solid angle Δω at an 
angle θ to the normal

! !"

!A

normal to observer

Let ΔEν equal the amount of energy  in photons with frequency in the range ν to ν  + Δν, 
passing through the area ΔA into solid angle Δω in a time Δt.  Then the specific intensity Iν is 
defined by the following:
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Eq. 2.1  

� 

Iν ≡ limΔ→0
ΔEν

cosθ ΔA Δt Δν Δω
 (Note:  ΔA cos θ is the projected area.)

 or 

� 

Iν ≡
dEν

cosθ dA dt dν dω

The limit here is a practical limit rather than a strictly mathematical limit.  This means we 
will shrink our Δ's down such that we are considering regions smaller than our resolving power, 
but not so small as to cause problems with the uncertainty principle or other quantum 
mechanical factors.

The dimensions of Iν can be obtained from the definition:  in cgs units – the standard for 
astronomy – E is in ergs, A is in square centimeters, t is in seconds, ν is in hertz, and ω is in 

steradians, making the dimensions of Iν 
ergs

cm2-s-Hz-st
.  Note:  The reader might observe that 

multiplication of seconds by hertz would cancel both units, thus simplifying the expression; 
however, the reader should strongly resist the temptation to do this.

In general, Iν is a function of position in space, direction (of the ray), and frequency; it is a 
measure of the brightness of a particular ray of a particular frequency at a particular point along 
the ray.  Iν can be defined for a point on a radiating surface or for a point in space (with a 
specified direction).

Note that once we have taken the limit as the solid angle (Δω) goes to zero, we have a ray, 
which is not divergent.  This means that the energy is not being spread out over a range of angles 
and diluted by distance, and hence, Iν is independent of distance from the source – Iν is constant 
along a ray.  The intensity  of a ray of sunlight is thus constant:  Iν for a point on the Sun would be 
the same as measured from any planet.  (Note:  If this seems counter-intuitive, it is because there 
is another property of radiation that does diminish with distance; stay tuned.)

Astronomers use telescopes to make stars appear brighter, but they do this not by increasing 
the intensity of a ray, but rather by  collecting more rays from the source.  Note also that intensity 
can only be measured for sources of finite angular size, such as the Sun, the Moon, or the 
planets, but it cannot be measured for point sources, such as stars.  Why not?

Iν depends on the angle θ between the ray to the observer and the normal to the surface at 
which the intensity is measured; different rays passing through the same point but going in 
different directions may  have different intensities.  But sometimes we do not care which 
direction the rays are moving and only want to know the average value of the intensity at a point.  
In this case, we can average Iν over all angles (over a sphere – over 4π) to get the mean intensity.

Mean Intensity
To find the mean intensity, Jν , we perform a weighted average.  We find the specific 

intensity, Iν , for each differential solid angle (dω), multiply  Iν by dω, and add these products up 
for the whole sphere.   Then we must divide this sum by the sum of the weights – the sum of the 
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differential solid angles – to obtain an average value for the intensity.  Mathematically, this 
becomes the following:

Eq. 2.2  

� 

Jν ≡
Iνdω4π∫
dω

4π∫
= 1
4π

Iνdω4π∫

Note here that the differential solid angle can be written as dω = sin θ dθ dϕ, and the integral 
in the denominator then can be easily solved:

Eq. 2.3  

� 

dω
4π∫ = sinθ dθ dφ

4π∫ = sinθ dθ dφ
0

π∫0

2π∫ = 2π sinθ dθ
0

π∫ = 2π[cosθ ]π
0 = 4π

Jν is an intensity, as is Iν , and therefore both quantities have the same units, described above 
for Iν .  While Iν can vary with the direction of the ray, Jν is an average value over all angles, and 
therefore it does not vary with direction.  If Iν should happen to be isotropic – meaning 'direction 
independent' – then Iν can be moved outside the integral to obtain the following:

Eq. 2.4  

� 

Jν = 1
4π

Iν4π∫ dω = 1
4π

Iν dω = Iν4π∫

Radiative Flux
Sometimes the question of interest is a bit different:  How much energy in an arbitrary 

radiation field will pass through an area ΔA in a time Δt in a frequency bandwidth Δν?  (Note:  
Here we have no mention of angles.)  The answer to this question will be the radiative flux (or 
simply, the flux) Fν , defined as follows:

Eq. 2.5  

� 

ΔFν = ΔEν

ΔA Δt Δν
= ΔEν

cosθ ΔA Δt Δν Δω
cosθ Δω

Then taking the limit, we find

Eq. 2.6  

� 

dFν = lim
Δ→0

ΔFν = lim
Δ→0

ΔEν

cosθ ΔA Δt Δν Δω
cosθ Δω = Iν cosθ dω

From this, we find the flux to be

Eq. 2.7  

� 

Fν = Iν4π∫ cosθ dω

The units of this flux are intensity units multiplied by solid angle units, or ergs
cm2-s-Hz

 .

Now if Iν is isotropic – a fairly  common simplifying assumption – then equal amounts of 
energy will pass through the area in each direction and the flux (or net flux) will be zero, as 
integration confirms:

Eq. 2.8  
Fν = Iν cosθ dω

4π∫ = Iν cosθ sinθ dθ dφ = 2π Iν0

π

∫0

2π

∫ sinθ cosθ dθ
0

π

∫
    = π Iν [sin2θ]0

π = 0
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In performing these integrations, the convention is to label the outward normal as θ = 0, as 
shown in Figure 2.2.

Figure 2.2:  Angular coordinate convention at the stellar surface

!

! = 0

! = "

! = "/2 out
insurface

Sometimes only  the outward flux (or emittance) is desired.  This can be found the same as in 
Equation 2.7 but integrating over only the outward hemisphere, which can be accomplished by 
changing the limits of integration.

Eq. 2.9  

� 

Fν
+ = Iν2π∫ cosθ dω

And if  Iν is isotropic, the integral can proceed easily:

Eq. 2.10 
Fν

+ = Iν cosθ dω
2π∫ = Iν cosθ sinθ dθ dφ = 2π Iν0

π /2

∫0

2π

∫ sinθ cosθ dθ
0

π /2

∫
     = π Iν [sin2θ]0

π /2 = π Iν

There are some who would prefer to eliminate the factor of π that  appears in the result  for 
Equation 2.10 (Fν+ = πIν), and this has been done by defining a quantity (Fν ≡ Fν /π) most 
generally  known as the astrophysical flux (see Gray (1976), Novotny (1973), Bohm-Vitense 
(1989)), but also as the radiative flux (see Collins (1989)).  Bowers and Deeming (1984) have the 
same two quantities but reverse the notation:  their flux is Fν while their astrophysical flux is Fν , 

making their linking equation  Fν = πFν .  In this book, we will not use the astrophysical flux.

There are some occasions where it  is useful to define a flux in the same manner as we 
defined the mean intensity – as a weighted average of a quantity.  In this case, the quantity to 
average is the product Iν cos θ.  The result is Hν – the Harvard flux or Eddington's flux.

Eq. 2.11 

� 

Hν ≡
Iν cosθ dω4π∫

dω
4π∫

= 1
4π

Iν cosθ dω4π∫ = Fν
4π

Radiation Pressure
Photons exert pressure – radiation pressure, designated Pν .  Radiation pressure is 

responsible for the dust tails of comets, as it pushes the tiny dust particles released by the comet 
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into higher orbits about the Sun.  It also makes an important contribution to the pressure at very 
high temperatures in stars.

Radiation pressure can be calculated for a particular intensity as follows.  In general, pressure 
is equal to force per unit area, with only the component of the force that is perpendicular to the 
area being counted.  But because force is the time derivative of momentum, pressure is then 
equal to the momentum flux.

Eq. 2.12 pressure =⊥ force
area

= 

d
dt

⊥ momentum

area
= momentum flux momentum

cm2 -s
⎡
⎣⎢

⎤
⎦⎥

The momentum pν of a group  of photons with energy Eν is pν = Eν /c.  Addition of photons 
with energy ΔEν to the group changes the momentum by Δpν = ΔEν /c.

Figure 2.3:  Photon momentum transfer to a surface

! !A
!E" !p"

!!p"!

#

Consider photons with energy ΔEν that are incident on a surface area ΔA at an angle to the 
normal θ, as shown in Figure 2.3.  These photons will transfer momentum to the surface, but 
only the perpendicular component of the momentum – given in Equation 2.13 – will contribute 
to the radiation pressure.

Eq. 2.13 

� 

Δpν⊥ = ΔEν

c
cosθ   (c is the speed of light*)

The perpendicular momentum flux (the radiation pressure) of these photons is then as 
follows:

Eq. 2.14 

� 

ΔPν = Δpν⊥
ΔA Δt Δν

= ΔEν cosθ
c ΔA Δt Δν

× cosθ Δω
cosθ Δω

Multiplying both numerator and denominator by  cos θ Δω and taking the limit yields the 
following:

Eq. 2.15 
dPν = lim

Δ→0
ΔPν = lim

Δ→0

ΔEν

cosθ ΔA Δt Δν Δω
cos2θ Δω

c

      = Iν
c

cos2θ dω

Finally, integrating this expression for dPν over all directions gives the radiation pressure Pν .
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Eq. 2.16 Pν = dPν4π∫ = 1
c

Iν4π∫ cos2θ dω dynes
cm2-Hz

⎡
⎣⎢

⎤
⎦⎥

Note that the radiation pressure integral contains two factors of cos θ :  one is because we 
want the projected area of the surface element, and the other is because only the perpendicular 
component of the momentum contributes to the pressure.

Equation 2.16 gives the monochromatic radiation pressure (good for photons in the range ν to 
ν + dν).  A related integral is defined by again taking a weighted average:

Eq. 2.17 

� 

Kν ≡
Iν cos

2θ dω
4π∫

dω
4π∫

= 1
4π

Iν cos
2θ dω

4π∫ = cPν
4π

 and   

� 

Pν = 4π
c
Kν

Now if Iν is isotropic, Pν can be calculated as follows:

Eq. 2.18 Pν =
Iν
c

cos2θ dω = 2π
c4π∫ Iν 1

3( cos3θ π

0
= 4π
3c

Iν

Note the 'moments of Iν':  these are convenient integrals to use because they  share a similar 
form.

Eq. 2.19a 

� 

Jν = 1
4π

Iν∫ dω

Eq. 2.19b 

� 

Hν = 1
4π

Iν cosθ∫ dω

Eq. 2.19c 

� 

Kν = 1
4π

Iν cos
2θ∫ dω

Radiative Energy Density
A radiation field contains photons traveling in various directions through space.  As each 

photon carries energy, there will be some radiative energy per unit volume of space; this quantity 
is the radiative energy density uν .  Its value can be determined by carefully selecting a volume 
of space and then counting the number of photons within it.

Let us begin by selecting a ray of light and then construct around it a cylindrical volume dV 
of length cdt and cross-sectional area dA, as shown in Figure 2.4.

Figure 2.4:  Volume of space used to determine radiative energy density

!!
!Acdt

Now consider all of the photons within dV (= c dt dA) that have a frequency in the range ν to 
ν + dν and are directed into a solid angle dω.  If the energy density is uν(ω), then the energy 
contained in dV is given by the following:
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Eq. 2.20 dEν = uν(ω) dV dν dω = uν(ω) dA cdt dν dω

Because of the manner in which this volume was constructed, the energy described above 
must all flow out of the volume through area dA into solid angle dω in time dt.  This energy  is as 
follows:

Eq. 2.21 dEν = Iν dA dt dν dω  (Note:  cos θ = 1)

Equating these two energies yields a relation between energy density and specific intensity:

Eq. 2.22 

� 

uν (ω) = Iν
c

Then the energy density can be found by integration:

Eq. 2.23 uν = uν4π∫ (ω ) dω = 1
c

Iν4π∫ dω = 4π
c
Jν

ergs
cm3-Hz

⎡
⎣⎢

⎤
⎦⎥

If Iν is isotropic, then Jν = Iν , and uν = 4π/c Iν .  But because Pν = 4π/3c Iν in the isotropic case, 
then Pν = 1/3 uν .  In an isotropic radiation field, radiation pressure is one third of the energy 

density.  Note:  The units of pressure (dynes/cm2) and energy density (ergs/cm3) are the same.
Thus, we have several ways of characterizing the radiation field, but all are ultimately 

dependent on the specific intensity, which is a function of position, direction, and frequency.  
Next we must turn our attention to the interactions between radiation and matter.

Radiation and Matter
As noted above, the intensity  of a ray of light does not change as it passes through the 

vacuum of space.  But  if light encounters matter along the way, the intensity may be altered by 
interactions between the radiation field and the matter.  (The details of such interactions will be 
explored in a later chapter.)  In general, the intensity may be decreased (by photons being either 
absorbed or scattered out of the ray) or increased (by photons being either emitted or scattered 
into the ray).  The rates at which these changes occur are defined in terms of coefficients specific 
to each process.

Emission Coefficient
Atoms may emit light spontaneously, without any particular provocation.  We can account for 

this process by defining the spontaneous emission coefficient jν as the energy emitted per unit 
volume per unit time per frequency interval per solid angle.

Eq. 2.24 dEν = jν dV dt dν dω    ⇒  jν =
dEν

dV dt dν dω

The units of this volume emission coefficient jν are then ergs
cm3-s-Hz-st

⎡
⎣⎢

⎤
⎦⎥

.  The volume 

emission coefficient  is used by Rybicki & Lightman (1979) and by  Bohm-Vitense (1989), 
although the latter designates it as εν rather than jν .  
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Other authors (Gray  (1976), Collins (1989)) define the emission coefficient in a different 
manner, as the amount of energy emitted per gram per unit time per frequency interval per solid 
angle.

Eq. 2.25 dEν = jν dt dν dω    ⇒ jν =
dEν

dt dν dω

(Note that although this coefficient is per gram, there is no dm factor in the expression.)

The units of this mass emission coefficient ergs
g-s-Hz-st
⎡
⎣⎢

⎤
⎦⎥

 are slightly different from those of 

the volume emission coefficient.  However, the same symbol (jν) is used for both coefficients.   
This may  seem potentially  confusing, but in reality, it is not that hard to tell which coefficient is 
meant.  And most authors will usually focus on only one of these; in this book, we will normally 
use the mass emission coefficient.

In either case, the isotropic emission coefficient is then given by ∫4π  jν dω = 4π jν  (Novotny, 
1973), but there is no special symbol for this term.  Spontaneous emission is inherently  isotropic; 
atoms have no preferred direction for emission of photons.

The emission coefficient appears as follows:  Consider a beam of light  of intensity  Iν passing 

through a length (dx) of matter of density ρ (g/cm3).  (The signs are set such that x increases 
along the ray.)  The change in intensity (dIν) due to emission is then given by the following:

Eq. 2.26a dIν = jν ρ dx    or

Eq. 2.26b  dIν = jν dx      for the volume coefficient

Note that spontaneous emission is independent of the value of Iν , which may even be zero; 
radiation need not be present in order for spontaneous emission to occur.

Absorption Coefficient
Absorption is a different matter, as without photons to absorb, there can be no absorption.  

Thus, absorption requires the presence of a radiation field, and the rate of absorption will depend 
on the value of the intensity of the radiation:  with more photons available, there will be more 
absorption.

Experimentally, this is found to be the case.  If conditions are such that negligible emission 
occurs, the intensity of a beam of radiation is found to diminish exponentially as it passes 
through matter, according to the following:

Eq. 2.27 

� 

dIν
dx

≈ −Iν

Here the negative sign signifies that  the intensity  decreases as x increases – that is, as the ray 
travels deeper into the matter.  This relation can be used to define an absorption coefficient κν , as 
follows:

Eq. 2.28 dIν = – κν ρ Iν dx
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The units of κν can be determined from this equation; the intensity units on either side cancel 

each other, leaving the units of κν equal to those of dx/ρ:  cm/(g/cm3) or cm2/g.  These units imply 
a simple, intuitive meaning for κν ; if we consider that each atom provides a target for the 
photons, then each gram of atoms would provide a collective target area equal to the value of κν .  
The greater this target area, the more likely absorption will occur.  Thus, κν is a mass absorption 
coefficient, giving the absorption target area per unit mass.

We can also define a volume absorption coefficient αν , which relates to κν through the density 
ρ:  

Eq. 2.29 αν  = κν ρ 

And it relates to the intensity in a manner similar to Equation 2.28:

Eq. 2.30 dIν = – αν Iν dx

The units of αν can be arrived at in several ways.  If κν is the target area per unit  mass (cm2/

g), then αν is the target area per unit  volume:  cm2/cm3, which of course reduces to cm–1.  This 
same result can be obtained by multiplying the units of κν and ρ together, or by noting from 
Equation 2.30 that αν must have the inverse units of x.

Radiative transfer may be done on a per gram basis, using jν and κν , or on a per volume basis, 
using jν and αν .  As noted, we will normally utilize the former, but will stay alert  for occasions 
better suited to the latter.

Cross Section
So far we have discussed the absorption coefficient as a target area per unit mass or as a 

target area per unit volume, but it  can also be considered as a target area per particle; that is, how 
large an absorption target does each particle in the gas present?  When used in this context, the 
absorption coefficient is usually  termed a cross section.  (Cross sections may be employed for 
other uses as well, such as in nuclear reactions.)  

The most common symbol for the cross section is σν , and it has units of cm2/particle or just 

cm2.  To determine the total cross section for a gas, we would then need to know the number 
density of particles – n (particles/cm3).  Multiplying the number density  (particles/cm3) by the 
cross section (cm2/particle) yields units of cm–1, the same as αν .  Thus, the cross section relates 
to the two absorption coefficients as follows:

Eq. 2.31 αν  = κν ρ = σν n

Mean Free Path
A related concept in this discussion of absorption is the question of how far a photon travels 

through matter, on average, before it is absorbed – a distance called the mean free path, ℓν .  
This quantity  is inversely related to the cross section and the absorption coefficients:  as the cross 
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section (or absorption coefficient) increases, the mean free path decreases, as the following 
shows.

Eq. 2.32 ℓν  = 1/κν ρ   = 1/σν n   = 1/αν

Nomenclature
There are a variety  of different terms that are used in connection with absorption coefficients, 

including cross section and opacity.  The opacity is the probability of a photon being absorbed 
(or scattered) by matter.  This probability can be expressed in several different ways, producing 
the different coefficients that we have already learned.
αν is the probability of absorption per unit path length, in cm–1.

αν is also the cross section per unit volume, in cm2/cm3.

κν is the cross section per unit mass, in cm2/g.

σν is the cross section per particle, in cm2/particle.

Table 2.1:  Opacity nomenclature

Author

• Volume Opacity
• Total Extinction 

Coefficient
• Absorption Coefficient

• Specific Opacity
• (Mass) Absorption Coefficient
• Opacity Coefficient
• Mass Scattering Coefficient

• Opacity per Particle
• Cross section
• Atomic Absorption 

Coefficient

Pierce (2013) αν κν σν 

Bowers & Deeming (1984) kν κν σν 

Gray (1976) – κν κ, α 

Novotny (1973) – κν , σ a 

Rybicki & Lightman  (1979) αν κν σν 

Bohm-Vitense (1989) κλ – σ 

Collins (1989) α κν , σν αν 

Carroll & Ostlie (1996) – κλ σ 

Not every author uses each of these coefficients, nor do they all agree on which symbols to 
use for them.  Table 2.1 illustrates the variation that can be expected in the literature.  (Note the 
use of the subscript λ, in place of ν in two instances; the quantities being discussed may also be 
written in terms of wavelength, rather than frequency, and some authors prefer this variation.)

This author will attempt to employ consistent usage throughout this book.

The Transfer Equation for Normal Rays
Now, armed with appropriate coefficients for absorption and emission, we are ready to allow 

for both processes to occur as light  passes through matter along a normal ray – one perpendicular 
to the surface.  We may begin by combining Equations 2.26 and 2.28 to obtain the following:

Eq. 2.33 dIν = – κν ρ Iν dx + jν ρ dx
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The equivalent 'per volume' equation is also presented here for comparison:

Eq. 2.34 dIν = – αν Iν dx + jν dx

The radiative transfer equation then follows from Equation 2.33:

Eq. 2.35 

� 

dIν
dx

= −κν ρ Iν + jν ρ

There are many  forms of the radiative transfer equation, with some better suited to solving 
particular problems and others containing more appropriate variables.  We will introduce some 
new variables now by dividing through both sides of the equation by κν ρ to obtain the following:

Eq. 2.36 

� 

dIν
κνρ dx

= −Iν + jν
κν

Now define the source function Sν as the ratio of emission coefficient to absorption 
coefficient:

Eq. 2.37 

� 

Sν ≡
jν
κν

And define the differential optical depth dτν :

Eq. 2.38 dτν ≡ κν ρ dx

Inserting these variables into the transfer equation gives the following simplified version:

Eq. 2.39 

� 

dIν
dτν

= −Iν + Sν

It should be clear from this equation that the source function has the same units as intensity, 
and that optical depth is dimensionless.

Optical Depth
The optical depth τν gives the overall effectiveness of a given amount of matter at absorbing 

photons.  It is a measure of the amount of matter the ray must path through, combined with the 
opacity, which specifies the matter's effectiveness at absorbing photons.  Both factors are needed:  
a small thickness of matter with a high opacity  can have the same optical depth as a huge cloud 
of matter with a low opacity.  

The differential equation 2.38 can be integrated to give an expression for τν :

Eq. 2.40 τν (x) = κν0

x

∫ ρd ′x        (x' is a dummy integration variable.)

Here the optical depth and the path length are both zero where the ray enters the matter, and 
they  increase together along the path.  That is, τν(0) = 0, and because κν and ρ are both positive 
quantities, τν and x will increase at the same time.  If κν and ρ are both constant throughout the 
medium, then the expression for the optical depth is further simplified:

Pierce:  Notes on Stellar Astrophysics Chapter 2:  Radiative Transfer

22



Eq. 2.41 τν (x) = κν ρ x

If the value of τν remains fairly  low when the ray has passed completely through the matter 
(τν << 1), we say the medium is optically thin, or transparent.  This means that the average 
photon can travel through the medium without being absorbed.  On the other hand, if the value of 
τν becomes relatively  high as the ray passes through the matter (τν >> 1), we say  the medium is 
optically thick, or opaque.  This means that the average photon will be absorbed – perhaps many 
times – as it attempts to travel through the medium.

Optical depth provides a way to characterize the optical properties of matter, without 
necessarily specifying all of the details of the physical properties.  Matter that is opaque may 
have a large absorption coefficient, a high density, and/or a long path length for the photons to 
travel.

The Source Function
The source function Sν is a property of the matter in its particular thermodynamic state.  For 

example, two gases with the same composition but at different temperatures and/or densities 
would have different source functions.  Because the source function is the ratio of the emission 
coefficient to the absorption coefficient, it includes the effects of emission and absorption – and 
scattering, too.

A scattered photon has the same energy as the incoming photon, but its direction may be 
changed by the encounter.  For our purposes, scattering can be treated as absorption followed 
immediately by emission of a photon of the same energy in a random direction; thus, we need 
only expand our meanings of jν and κν to include scattering, and we will be able to use our 
existing transfer equation, without adding a third term.

In κν we will include photons that have been absorbed (with their energy  thermalized – turned 
into thermal energy of the particles of absorbing matter) and also photons that have been 
scattered out of the beam solid angle by the matter.

In jν we will include photons that have been emitted (with their energy coming from the 
thermal energy of the particles of absorbing matter) and also photons that have been scattered 
into the beam solid angle.

Let us now illustrate some special, simple cases of the source function, which represent 
opposite extremes of the contribution of scattering:  pure scattering and pure absorption.

In the case of pure scattering, we will suppose that all of the emitted energy represented by 
the emission coefficient jν is due to photons being scattered into the beam by the matter.  It is not 
necessary  to assume that every scattered photon is scattered into the beam – only that scattering 
is the only source of new photons in the beam.

In keeping with our treatment of scattering above, we may say that  photons are being 
absorbed and then immediately re-emitted isotropically  at  the same frequency, with some 
fraction of these being in the beam of interest.  What is the appropriate source function?

Figure 2.5 illustrates photons encountering a particle of matter from some random solid angle 
dω and being scattered into the beam, where they are counted towards the emission as djν .  The 
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portion of the incoming intensity Iν that is scattered is determined by the absorption coefficient 
κν , allowing us to write the following expression for the contribution to the beam emission djν 
from the solid angle dω:

Eq. 2.42 djν = κν Iν dω/4π

Figure 2.5:  Scattering of photons into the beam from solid angle dω
d!

dj"

Here the factor κν Iν represents the rate at which photons from all directions are being 
absorbed by the matter, and the ratio dω/4π is the fraction of those absorbed photons that  came 
from the solid angle dω.  To obtain the total beam emission, we must integrate the previous 
equation over all incoming solid angles:

Eq. 2.43 

� 

jν = 1
4π

κν4π∫ Iνdω

But because κν is generally independent of direction (atoms have no preferred direction from 
which they absorb photons), we may remove this coefficient from the integral, which leads to an 
easy solution:

Eq. 2.44 

� 

jν = κν

4π
Iν4π∫ dω =κν Jν

And the source function is then very simple:

Eq. 2.45 

� 

Sν ≡
jν
κν

= Jν

That is, in the case of pure scattering, the source function is equal to the mean intensity.  This 
means that the photons emerging from the matter will have the same characteristics as the 
photons that entered the matter, except for some redirection.  In particular, the spectral 
distribution of the photons is not modified by their passage through the matter.

The other special case of note is that of pure absorption, in which it is assumed that no 
scattering takes place.  Incoming photons are absorbed by the matter and their energy is 
thermalized; new photons are then created from this pool of energy and emitted; their spectral 
distribution will be governed completely  by the physical state of the matter from which they 
emerge.  

Discussion of this process will normally be limited to a particular state of matter called local 
thermodynamic equilibrium (LTE).  This means that within a local region of apace, matter has 
reached a state of equilibrium in which no net transitions are occurring; the distribution of 
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particles in different energy states is given by standard distribution functions (to be discussed 
later) that are characterized by the temperature.

For example, in the case of pure absorption, if the matter is opaque, then the radiation it  emits 
will have the spectrum of a blackbody, and the source function will be the photon distribution 
function associated with blackbody radiation, called the Planck function, Bν(T).

Eq. 2.46 

� 

Bν (T ) = 2hν
3

c2
1

e
hν

kT −1
     with units ergs

cm2-s-Hz-st
⎡
⎣⎢

⎤
⎦⎥

The Planck function is often written in terms of wavelength, rather than frequency, in which 
case it is known as Bλ(T).

Eq. 2.47 

� 

Bλ (T ) = 2hc
2

λ5
1

e
hc

λkT −1
     with units ergs

cm2-s-cm-st
⎡
⎣⎢

⎤
⎦⎥

(Once again, the reader should strongly resist the temptation to combine these units.)
It should be noted that although Bν(T) and Bλ(T) have similar names and similar forms, they 

really are different functions, with different units, and thus are not interchangeable.  They are, of 
course, related; when we integrate Bν(T) over all frequencies, we should get the same result  as 
when we integrate Bλ(T) over all wavelengths – a result we call B(T), the integrated Planck 
function.

Eq. 2.48 

� 

Bν0

∞∫ (T )dν = Bλ0

∞∫ (T )dλ = B(T )

The differential form of this equation

Eq. 2.49 dB(T)= Bν(T)dν = Bλ(T)dλ

leads to the transformation expression

Eq. 2.50 Bλ(T) = Bν(T) dν/dλ  with ν =c/λ   and  dν/dλ = – c/λ2 

The Planck function has a standard form, shown in Figure 2.6.  Bν(T) plotted vs. frequency 
exhibits a similar form.  In either case, the curve starts at zero, rises to a maximum and then falls 
off, becoming asymptotic to the horizontal axis.  Increasing the temperature will move each point 
higher and shift  the peak to shorter wavelengths.  The wavelength where this peak occurs is 
found by setting the derivative of the Planck function to zero.  The result is known as Wien's 
displacement law:

Eq. 2.51 λmax =
constant

T
  where the constant is about 0.2898 cm-K

As noted above, integrating either Planck function gives B(T), which is the area under the 
curve.  The value of the integrated Planck function is as follows:

Eq. 2.52 

� 

B(T ) = σ T 4

π
    with units ergs

cm2-s-st
⎡
⎣⎢

⎤
⎦⎥
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(Here σ is the Stefan-Boltzmann constant*, not a cross section.)

Figure 2.6:  The Planck function, Bλ(T) for T = 4400 K
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We could use these two extreme cases of pure scattering and pure absorption to arrive at a 
suitable source function by defining different opacities for scattering (κνS) and absorption (κνA), 
with a total opacity (κν) equal to their sum.  Then the emission coefficient, which is generally the 
product of the opacity and the source function, can be written as a combination of terms, as 
follows:

Eq. 2.53 jν = κνS Jν + κνA Bν(T)

And the source function, which is jν / κν , can then be calculated:

Eq. 2.54 

� 

Sν = κν
S

κν

Jν + κν
A

κν

Bν (T )

For now however, we will keep things simple and just use κν for our opacity.

Solutions of the Transfer Equation
It is now time to find a solution to the transfer equation.  Because the transfer equation is a 

differential equation with Iν as the dependent variable, the solution we seek will be an equation 
giving Iν as a function of the independent variable, usually x or τν .  That is, we want to know 
how the intensity varies as it passes through matter.

To begin, we will pick a suitable form of the transfer equation, perhaps Equation 2.35:

Eq. 2.35 

� 

dIν
dx

= −κν ρ Iν + jν ρ
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The independent variable is x, the path length, which increases along the ray.
First we will investigate the special case in which no absorption occurs.  This can be 

accomplished by setting κν equal to zero.  Then the transfer equation is much simpler:

Eq. 2.55 

� 

dIν
dx

= jν ρ

The integral form of this equation is as follows:

Eq. 2.56 

� 

dIν∫ = jν∫ ρ dx

And the solution can be written in this form:

Eq. 2.57 Iν (x) = Iν (0)+ jν0

x

∫ ρd ′x     special case solution:  no absorption

Because the integral term in this solution is positive for all points in the matter, we can say 
that the intensity  must increase along the ray.  We cannot proceed any further without knowing  
how the emission coefficient and/or the density vary along the path.

The next special case to consider is that with no emission, which we can obtain by setting jν 
equal to zero.  The transfer equation again simplifies:

Eq. 2.58 

� 

dIν
dx

= −κν ρ Iν

This differential equation can be solved by first separating variables:

Eq. 2.59 

� 

dIν
Iν

= −κν ρ dx

This can be easily integrated:

Eq. 2.60 ln Iν (x)− ln Iν (0) = κν0

x

∫ ρd ′x

Or, in a more common form:

Eq. 2.61 Iν (x) = Iν (0) e
− κνρ d ′x

0

x

∫

Or, in a simpler form:

Eq. 2.62  Iν(τν) =  Iν(0) e–τν   special case solution:  no emission

From this, it should be clear that if no emission is occurring, the intensity will decrease 
exponentially along the ray, with the optical depth being the independent variable.  Of course, it 
would be best to know how the intensity  varies if both emission and absorption are allowed to 
proceed, as that situation is most apt to present itself in real life.  Unfortunately, the solution will 
not be obtained as simply as by  combining the two special case solutions.  Instead, we must 
return to the transfer equation, this time beginning with Equation 2.39:
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Eq. 2.39 

� 

dIν
dτν

= −Iν + Sν

For this equation, both the intensity and the source function are functions of the optical 
depth, which increases along the ray.  Let us begin our solution of this differential equation by 
rewriting it:

Eq. 2.63 

� 

dIν
dτν

+ Iν = Sν

We will now employ one of the standard tricks used to solve differential equations:  
multiplying both sides of the equation by a common factor – in this case, by eτν.

Eq. 2.64 

� 

eτν dIν
dτν

+ Iνe
τν = Sνe

τν

At this point, the astute reader will note that we now have an exact differential; that is, the 
left side of the equation is the derivative of some function, which we can write down by 
inspection:

Eq. 2.65 

� 

d
dτν

Iνe
τν( ) = Sνe

τν

And this can now be integrated from 0 to τν :

Eq. 2.66 [ Iνe ′τν
0

τν =
0

τν∫ Sν ( ′τν )e
′τνd ′τν

Evaluating the left side gives the following:

Eq. 2.67 Iν (τν )e
τν − Iν (0) = 0

τν∫ Sν ( ′τν )e
′τνd ′τν

And finally, dividing by  eτν gives us the formal solution to the transfer equation for 
normal rays:

Eq. 2.68 Iν (τν ) = Iν (0)e
−τν +

0

τν∫ Sν ( ′τν )e
−(τν − ′τν )d ′τν

The different pieces of this formal solution can be interpreted as follows:

• Iν(0) e–τν is the original intensity, decreasing with τν due to absorption.

• 0

τν∫ Sν ( ′τν )e
−(τν − ′τν )d ′τν  is the integrated source, increasing with τ'ν (due to emission) and 

decreasing with τν (due to absorption).

Figure 2.7 shows the coordinates associated with the ray as it passes through matter with 
source function Sν .  Without more knowledge of the source function, this solution cannot be 
further simplified.
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Figure 2.7:  Coordinates used in the formal solution to the transfer equation (for normal rays)
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Let us now consider a simple case in which the source function is constant throughout the 
matter – that is, Sν(τν) = Sν .  In this case, Sν can be brought outside of the integral and the 
integration can proceed as follows:

Eq. 2.69 Iν (τν ) = Iν (0)e
−τν + Sν 0

τν∫ e−(τν − ′τν )d ′τν = Iν (0)e
−τν + Sν e−(τν − ′τν )( 0

τν

Eq. 2.70 Iν(τν) =  Iν(0) e–τν + Sν(1– e–τν)

This result says that after passing through matter with an optical depth of τν , the intensity  of 
a ray  will be a combination of the original intensity and the source function of the matter.  Which 
of these two makes the greater contribution depends on the value of τν .  This can easily be seen 
by considering the behavior of the two exponential functions in Equation 2.70.  Figure 2.8a 
shows the variation of the initial intensity  term (where x = τν) while Figure 2.8b shows the 
variation of the source function term.

Figure 2.8a:  Graph of  y = e–x  Figure 2.8b: Graph of  y = 1 – e–x 
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As τν increases, the beam is affected less by  the initial intensity  and more by the source 
function of the medium.  An example of this is found in the observations of a star through a 
cloud in the atmosphere.  If the cloud is relatively thin – perhaps just haze – the star can still be 
seen with only  minor attenuation.  However, a thicker cloud not only blocks out the star better, 
making it harder to see, but also becomes more visible itself as its source function makes a 
greater contribution to the ray.

Note that at low optical depths (τν << 1), both curves in Figure 2.8 become nearly  linear.  
This is because we can use the series expansion for e–x to approximate this function as a linear 
equation:
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Eq. 2.71 

� 

e−x =1− x+ x2

2
− . . .≈ 1− x   and  1 – e–x ≈ x  for x << 1

Then Equation 2.70 is further simplified:

Eq. 2.72 Iν(τν) ≈ Iν(0)(1 – τν) + Sν τν   (for τν << 1)

For low values of τν , the source function will make a negligible contribution, and the 
intensity will be primarily due to the star.  On the other hand, if the cloud is optically thick (τν >> 

1), then e–τν ⇒ 0, 1– e–τν ⇒ 1, and Iν(τν) ⇒ Sν , meaning the radiation we see comes mostly from 
the cloud.  In general, the star will be dimmed by the cloud, but the intensity will not drop below 
the source function of the cloud, as shown in Figure 2.9.

Figure 2.9:  The intensity of a star as seen through a cloud with a source function that is 40% of 
the star's intensity
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The Transfer Equation for Oblique Rays
So far this equation of transfer applies only to radiation that is normal to the surface of the 

matter, as shown in Figure 2.10.  The ray travels through the matter along the path dx.

Figure 2.10:  Geometry for a normal ray
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For the case of a ray that is not normal to the surface, an oblique path must be used, as shown 
in Figure 2.11.

Figure 2.11:  Geometry for an oblique ray
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To obtain the proper transfer equation, we must replace the normal path length dx in our 
existing equation by the oblique path length ds (= sec θ dx).  Then

Eq. 2.35 

� 

dIν
dx

= −κν ρ Iν + jν ρ     becomes

Eq. 2.73 

� 

dIν
ds

= −κν ρ Iν + jν ρ  .

Substituting ds = sec θ dx allows us to write the transfer equation for an oblique ray in terms 
of the normal coordinate x:

Eq. 2.74 

� 

cosθ dIν
dx

= −κν ρ Iν + jν ρ

In solving the previous transfer equation (Equation 2.35), we made use of the optical depth, 
which depends on the path length.  However, using the oblique path length ds will produce a 
different optical depth from that obtained using the normal path length dx, which is shorter.  To 
solve this problem, we will work with normal coordinates and will define and use a normal 
optical depth even though the ray may not be normal.

Normal Optical Depth
Our normal coordinate is x, and our normal optical depth may be defined by Equations 

2.75:

Eq. 2.75a dτν(x) ≡ ± κν ρ dx

Eq. 2.75b τν (x) = ± κν0

x

∫ ρd ′x

Here the '+' sign indicates that x and τ increase in the same direction (as in Figures 2.10 and 
2.11), while the '–' sign indicates that they increase in opposite directions, which is often more 
convenient.  In most astronomical applications, the ray moves outward from the surface toward 
the observer, but the observer looks backward along the ray, into the surface.  For this reason we 
will modify our coordinates as shown in Figure 2.12.
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Figure 2.12:  Coordinates for the transfer function for oblique rays
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Thus, we will be using the negative form of the normal optical depth:

Eq. 2.76 dτν(x) ≡ – κν ρ dx

With this choice, the transfer equation shown in Equation 2.74 can be written in terms of the 
optical depth as shown:

Eq. 2.77 

� 

cosθ dIν
dτν

= + Iν − Sν

This form of the transfer equation will be most appropriate when the properties of the 
medium are functions of the normal coordinate x.  An example of this can be found in the 
atmosphere of a radially symmetric star for which the vertical extent of the atmosphere is much 
less than the radius of the star; such a case will be called a plane-parallel atmosphere, to be 
discussed below.  First  we should briefly investigate the problem of an extended atmosphere, for 
which this constraint does not apply.

Extended Atmospheres
Consider a star with an extended atmosphere – one for which the thickness of the 

atmosphere is not small compared to the radius of the star.  The reason for this distinction is 
simple; for an extended atmosphere, a ray traversing the atmosphere enters and leaves at 
different angles θ (Figure 2.13a), while for a plane-parallel atmosphere, which is relatively thin 
compared to the star's radius, these angles are essentially the same (Figure 2.13b).

Figure 2.13a:  Extended atmosphere Figure 2.13b:  Plane-parallel atmosphere

!

!

             
We will begin with the transfer equation of Equation 2.73, rewritten as follows:

Eq. 2.78 

� 

dIν
κν ρ ds

= −Iν + Sν       (The ray travels in the +s direction.)
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For this problem, we will use spherical polar coordinates as shown in Figure 2.14a; these are 
oriented such that the z-axis (the polar axis) is the line of sight along the ray, pointing toward the 
observer; and the position vector   

� 

 r  represents the normal to the surface (the stellar radius).

Figure 2.14a:  Spherical polar coordinates Figure 2.14b:  Components of the ray

!"

s
r

z

                                                    

rd!

dr

dz

!

The differential ray  vector dz can be resolved into components that are parallel (rdθ) and 
perpendicular (dr) to the surface, as shown in Figure 2.14b.  The magnitudes of these 
components are dr = dz cos θ and rdθ = –dz sin θ, which lead to the derivatives given by 
Equations 2.79:

Eq. 2.79a 

� 

dr
dz

= cosθ      Eq. 2.79b 

� 

dθ
dz

= − sinθ
r

The transfer equation (Equation 2.78) written in spherical polar coordinates is then as 
follows:

Eq. 2.80 

� 

1
κν ρ

dIν
ds

= 1
κν ρ

dIν
dz

= 1
κν ρ

∂Iν
∂r

dr
dz

+ ∂Iν
∂θ

dθ
dz

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = −Iν + Sν

Inserting the derivatives from Equations 2.79 yields the following result:

Eq. 2.81 

� 

1
κν ρ

cosθ ∂Iν
∂r

+ sinθ
r

∂Iν
∂θ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = −Iν + Sν

This form of the transfer equation is used for extended atmospheres and for stellar interiors, 
where the angle between a particular ray and the normal is not constant with radius.  We will 
ignore such cases and focus on relatively thin atmospheres, for which ΔRatmos/R* <<1 and the ray 
enters and leaves the atmosphere at essentially  the same angle.  These are the conditions of a 
plane-parallel atmosphere.  For such an atmosphere, because dθ/dz ≈ 0, the transfer equation 
(Equation 2.81) reduces to the following:

Eq. 2.82 

� 

cosθ dIν
κν ρ dr

= −Iν + Sν

(An equivalent equation was previously derived (Equation 2.74), with dx in place of dr. ) 
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Plane-Parallel Atmospheres
These cases are called plane-parallel atmospheres because the top and the bottom of the 

atmosphere are assumed to be parallel planes, even though the star is a sphere.  (The 
approximation is good if the above condition ΔRatmos<<R* is met.)  We will now manipulate 
Equation 2.82 to obtain one that has the coordinates we need.

The current coordinates for Equation 2.82 are those shown in Figure 2.15.  The outward 
normal coordinate is r, the stellar radius, and s is the coordinate outward along the ray.

Figure 2.15:  Transfer equation (polar) coordinates

!
r

s

surface
out
in

ray

It will be convenient to also have an inward-directed coordinate, opposite r ; let us redefine 
our former outward x-coordinate as an inward normal coordinate such that dx = –dr.  With this 
substitution, Equation 2.82 becomes as follows:

Eq. 2.83 

� 

cosθ dIν
κν ρ dx

= Iν − Sν    (Note the sign changes.)

Next we will introduce an optical depth.  Because we want the ray moving outward but the 
optical depth increasing inwards, we could define τν(s) – the optical depth along the ray – by 
Equation 2.84:

Eq. 2.84 dτν(s) ≡ – κν ρ ds

But as noted above, it is more convenient to use a normal optical depth, which we can obtain 
by noting that ds = –sec θ dx, giving the following:

Eq. 2.85 dτν(x) ≡ +κν ρ dx (or  dτν(r) ≡ – κν ρ dr )

Figure 2.16 shows a modified diagram of the coordinates used, including the optical depths.

Figure 2.16:  Modified transfer equation (polar) coordinates
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Writing the transfer equation in terms of the optical depth τν(s) results in the following form:

Eq. 2.86 

� 

cosθ dIν
dτν

= Iν − Sν
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This can now be solved to give the intensity of the ray as a function of optical depth.

Solution of the Transfer Equation
To aid in the solution of this differential equation, let us make a simple substitution, setting 

cos θ equal to µ.  This changes the transfer equation to the following:

Eq. 2.87 

� 

µ dIν
dτν

− Iν = −Sν

This can be solved by multiplying both sides of the equation by e–τν /µ as shown:

Eq. 2.88 e
−τν µ dIν

d τν
µ( ) − e

−τν µ Iν = −e
−τν µSν

It will be immediately recognized that the left side of the equation is an exact differential:

Eq. 2.89 d
d τν

µ( ) e
−τν µ Iν

⎡
⎣⎢

⎤
⎦⎥
= −e

−τν µSν

This can be integrated to give the following equation (where tν is a dummy integration 
variable):

Eq. 2.90 e
−
τν
µ Iν = − SνC

τν
µ∫ e

−
tν
µ d tν

µ( )
And this can be rearranged to yield the solution:

Eq. 2.91 

� 

Iν (τν ) = − SνC

τν∫ (tν )e
− tν −τν( ) µd tν µ

The integration limit C depends on the boundary conditions of the problem, and this will 
depend on whether the radiation is directed inward or outward.

Figure 2.17:  Coordinates associated with the solution to the transfer equation for an isolated 
star
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Consider an isolated star, surrounded by space, with essentially no radiation incident on it, as 
shown if Figure 2.17.  For inward-directed rays inside the atmosphere, the integration will then 
proceed from the outer edge of the atmosphere – in practice, a not-very-well-defined location – 
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to the position in question within the atmosphere at  optical depth τν and intensity  Iν(τν).  The 
appropriate value of the τν integration limit C is 0.  With this substitution, the intensity of inward 
rays is as follows:

Eq. 2.92 

� 

Iν
in(τν ) = − Sν0

τν∫ (tν )e
− tν −τν( ) µd tν µ

For outward-directed rays in a star, photons may originated at  greater optical depths, as deep 
as τν = ∞, as shown in Figure 2.17; therefore C = ∞ for this integration.

Eq. 2.93 

� 

Iν
out (τν ) = − Sν∞

τν∫ (tν )e
− tν −τν( ) µd tν µ = Sντν

∞∫ (tν )e
− tν −τν( ) µd tν µ

The total intensity at optical depth τν is then the sum of the inward and outward intensities:

Eq. 2.94 

� 

Iν (τν ) = Iν
out (τν )+ Iν

in(τν ) = Sντν

∞∫ (tν )e
− tν −τν( ) µd tν µ − Sν0

τν∫ (tν )e
− tν −τν( ) µd tν µ

Although measuring the intensity at different points within a star's atmosphere would be very 
difficult, we should be able to measure the value at the top of the atmosphere, where τν = 0, and 

therefore Iν
in(0) = 0.  This leads directly to the following expression for the total intensity, which 

is just the outward intensity:

Eq. 2.95 

� 

Iν (0) = Iν
out (0) = Sν0

∞∫ (tν )e
−tν µd tν µ

Of course, this is only useful for stars for which different values of µ (= cos θ) can be 
distinguished – such as the Sun.  Most stars appear to us only as points, for which only the flux 
can be measured.

Given our expression for the specific intensity (Equation 2.94), if we know the source 
function's dependence on the optical depth, we can determine not only the intensity, but also the 
mean density, flux, radiation pressure, etc.  Let us see what form such equations will take.

From before (Equation 2.7), we have an expression for the flux, which can now be rewritten 
using the standard substitution (µ = cos θ and dµ = –sin θ):

Eq. 2.96 

� 

Fν = Iν4π∫ cosθ dω = 2π Iν0

π∫ cosθ sinθ dθ = 2π Iν−1

1∫ µ dµ

We can separate the integral into outward and inward components:

Eq. 2.97 

� 

Fν = 2π Iν
out

0

1∫ µ dµ + 2π Iν
in

−1

0∫ µ dµ

Now we can insert our expressions for the intensity from Equation 2.94 into the appropriate 
integrals:

Eq. 2.98 

� 

Fν (τν ) = 2π Sντν

∞∫ (tν )e
− tν −τν( ) µdtν0

1∫ dµ − 2π Sν0

τν∫ (tν )e
− tν −τν( ) µdtν−1

0∫ dµ

If we make our standard assumption that the source function is isotropic, then Sν can be 
removed from the µ integral (but not the t integral) and the order of integration reversed.
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Eq. 2.99 

� 

Fν (τν ) = 2π Sντν

∞∫ (tν ) e− tν −τν( ) µdµ dtν0

1∫ − 2π Sν0

τν∫ (tν ) e− tν −τν( ) µdµ dtν−1

0∫
In order to make this expression easier to write, it is customary to make the following 

substitutions:  let µ ≡ 1/w  ⇒   dµ = – dw/w2, and let x ≡ tν – τν .  (Note:  This is not our inward 
normal coordinate x.)  Then we can rewrite the µ integral as follows:

Eq. 2.100 

� 

e− tν −τν( ) µdµ = − e
−wx

w2∞

1∫0

1∫ dw = e−wx

w21

∞∫ dw

This is the well-known exponential integral E2(x), of the following general form:

Eq. 2.101 

� 

En(x) ≡
e−xw

wn1

∞∫ dw

Exponential Integrals 
The exponential integrals En(x) are monotonically diminishing functions of x that 

all behave the same way for large values of x (Gray  1976).  They serve as extinction 
factors in the solutions to the equations of radiative transfer.  

General form:   En (x) =
e− xw

wn1

∞

∫ dw

Special cases:  
   

� 

En(0) = w−n
1

∞∫ dw

 If n ≠ 0, 1  En (0) =
1
1− n

w1−n
1

∞
= ∞1−n

1− n
− 1
1− n

= 1
n −1

 If n = 0  E0 (x) = e− xw
1

∞

∫ dw = e
− xw

−x 1

∞

= 0 − e
− x

−x
= e

− x

x

  and 

� 

E0 (0) = 1
0
⇒∞

 If n = 1  

� 

E1(0) = dw
w1

∞∫ = lnw 1
∞ = ln∞− 0 = ∞

Recursion relations: 

� 

dEn(x)
dx

= 1
wn1

∞∫ d
dx
e−xwdw = − e−xw

wn−11

∞∫ dw = −En−1(x)

  and 

� 

nEn+1(x) = e−x − xEn (x)

We can accomplish a similar simplification for the second µ integral in Equation 2.99 by 
letting  µ ≡ – 1/w   ⇒    dµ = dw/w2,  and x ≡ τν – tν :

Eq. 2.102 

� 

e− tν −τν( ) µdµ =
−1

0∫ e−xw

w21

∞∫ dw

Then the flux can be written as follows:
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Eq. 2.103 

� 

Fν (τν ) = 2π Sντν

∞∫ (tν )E2 (tν − τν )dtν − 2π Sν0

τν∫ (tν )E2 (τν − tν )dtν

The theoretical flux at the surface of the star (τν = 0) is found from Equation 2.103:

Eq. 2.104 

� 

Fν (0) = 2π Sν0

∞∫ (tν )E2 (tν )dtν

Equations for the mean intensity  and the radiation pressure integral can also be obtained in a 
similar fashion:

Eq. 2.105 

� 

Jν (τν ) = 1
2

Sντν

∞∫ (tν )E1(tν − τν )dtν + 1
2

Sν0

τν∫ (tν )E1(τν − tν )dtν

Eq. 2.106 

� 

Kν (τν ) = 1
2

Sντν

∞∫ (tν )E3(tν − τν )dtν + 1
2

Sν0

τν∫ (tν )E3(τν − tν )dtν

We are now ready to apply  our basic radiative transfer results to the problem of radiation 
passing through the stellar atmosphere, a region of the star also known as the photosphere.

Radiative Equilibrium in the Photosphere
A star generates energy  in its optically  thick interior and transports this energy to the stellar 

surface, where photons carry the energy into space.  In the stellar photosphere, the gas changes 
from optically  thick to optically  thin, meaning that  most of the photons will pass through this 
region, but some will not.  Those photons that  are absorbed will deposit their energy in the 
photospheric gas, but this energy will be re-emitted in the form of new photons.  The net  effect of 
the photosphere is then to transmit energy; it serves as neither a source nor a sink of photons.  
Such a gas is said to be in radiative equilibrium.  

With a photosphere in radiative equilibrium, energy  flows into the base of the atmosphere at 
the same rate that it  flows out  of the top; in other words, the luminosity is constant throughout 
the photosphere.  Of course, luminosity is the product of flux and surface area, and because we 
are using a plane-parallel atmosphere, the top and bottom of the atmosphere should have the 
same surface area.  Therefore, with constant luminosity and constant area throughout the 
atmosphere, the flux should also be constant – a value we will denote as F0 .  (It is assumed that 
the sole mechanism of energy transport  in the atmosphere is radiation – that convection and 
conduction play no significant role.)

As noted above, we are allowing absorption to occur, followed by emission, processes that 
may involve photons of different frequencies.  Therefore the constant flux condition is applicable 
to the integrated flux, rather than Fν :

Eq. 2.107 

� 

F0 = Fν0

∞∫ dν  = constant

Also, we can integrate the transfer equation (derived from Equations 2.85 and 2.86) over all 
angles, as follows:

Eq. 2.108 

� 

cosθ dIν
dx

=κνρ Iν −κνρ Sν
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Eq. 2.109 

� 

d
dx

Iν4π∫ cosθ dω = κνρ Iν4π∫ dω − κνρ Sν4π∫ dω

Now let us assume that  κν , ρ , and Sν are independent of ω; then they can be removed from 
the integrals, turning each integral into a recognizable expression:

Eq. 2.110 

� 

d
dx

Iν4π∫ cosθ dω =κνρ Iν4π∫ dω −κνρ Sν dω
4π∫

Eq. 2.111 

� 

dFν
dx

=4πκνρ Jν −4πκνρ Sν

We then integrate over frequency:

Eq. 2.112 

� 

d
dx

Fν0

∞∫ dν =4π ρ κν0

∞∫ Jνdν −4π ρ κν0

∞∫ Sνdν

The left side of the equation is zero because the integrated flux is constant with x.  This 
leaves the following result:

Eq. 2.113 

� 

κν0

∞∫ Jνdν = κν0

∞∫ Sνdν

A third result can be obtained by  returning to the transfer equation (Equation 2.108) and 
multiplying both sides by cos θ:

Eq. 2.114 

� 

cos2θ dIν
dx

=κνρ Iν cosθ −κνρ Sν cosθ

This equation is then integrated over all angles, with the same assumptions about κν , ρ , and 
Sν being independent of ω:

Eq. 2.115 

� 

d
dx

Iν4π∫ cos2θ dω =κνρ Iν4π∫ cosθ dω −κνρ Sν cosθ dω
4π∫

Eq. 2.116 

� 

4π dKν

dx
=κνρFν − 0 ⇒ dKν

dτν

= Fν
4π

And integrating this expression over frequency yields the following:

Eq. 2.117 

� 

dKν

dτν
0

∞∫ dν = F0
4π

The condition of radiative equilibrium gives the following three results:

Eq. 2.107 

� 

F0 = Fν0

∞∫ dν  = constant

Eq. 2.113 

� 

κν0

∞∫ Jνdν = κν0

∞∫ Sνdν

Eq. 2.117 

� 

dKν

dτν
0

∞∫ dν = F0
4π
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The flux constant F0 is usually expressed in terms of a temperature:

Eq. 2.118 F0 ≡ σTe
4

Here σ is the Stefan-Boltzmann constant (≈ 5.670e–5), and Te is the effective temperature, 
which is the temperature of a blackbody  that has the same integrated flux as the star.  The link is 
as follows:

A blackbody has an integrated intensity I = B(T) = σT 4/π (Equation 2.52), and the outward 
flux at the surface of a star (from an isotropic field) is F = π I  (Equation 2.10).  Combining these 
two expressions gives Equation 2.118.

Let us now make use of a rather unrealistic example.

The Gray Case
Real stars are very  complicated; one of the main complications is that photons of different 

frequencies interact differently with stellar matter – which is why  we have been carrying 
subscripts on our absorption coefficients, intensities, and such.  Radiative transfer problems 
would be easier to solve if this were not the case.

As an illustration, let us assume that absorption has no frequency dependence – that κν = κ.  

There will then be no need to keep  track of different frequencies, and we can write 

� 

I = Iν0

∞∫ dν , 

etc.  This is called the gray case (because with no frequency differentiation, there would be no 
color difference – only  shades of gray depending on the magnitude of the intensity).  The transfer 
equation (Equation 2.108) then is written as follows:

Eq. 2.119 

� 

cosθ d
dx

Iνdν0

∞∫ =κ ρ Iνdν0

∞∫ −κ ρ Sνdν0

∞∫     or

Eq. 2.120 

� 

cosθ dI
dx

=κ ρ I −κ ρ S     or

Eq. 2.121 

� 

cosθ dI
dτ

= I − S

Similarly, the radiative equilibrium conditions become much simpler:

Eq. 2.122 F = F0 = constant

Eq. 2.123 J = S

Eq. 2.124 

� 

dK
dτ

= F0
4π

  (a constant = H0)

The first of these says that the flux is constant.  The second says that the source function is 
equal to the mean intensity; determination of J(τ) will give us S(τ).  The third equation can be 
easily integrated:

Eq. 2.125 K(τ ) = F0
4π

τ + constant    or      K(τ) = H0 τ + constant
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With one more simplifying assumption, we will be able to determine both the intensity  and 
the source function for the gray atmosphere.

The Eddington Approximation
We will not be able to proceed very far in our quest without having to integrate over solid 

angle.  Previously we have done so by assuming the radiation field was isotropic, but this will 
not always be an appropriate assumption.  We need a solid angle distribution that  is simple 
enough to be integrable and yet still somewhat realistic for a stellar atmosphere.  This is provided 
by the Eddington approximation.

In an isotropic radiation field, the intensity is constant  over the whole sphere (4π steradians); 
that is, at  a given point in the atmosphere, at some particular optical depth, the intensity is the 
same in all directions (but it still varies with τ).  The Eddington approximation uses a radiation 
field that is constant over the outward hemisphere and constant over the inward hemisphere, but 
the two constants are different.  At any given optical depth τ, the intensity takes on one of two 
values, depending on the direction of the ray.

For outward rays, for which θ = 0 → π / 2,  I(τ) = I +(τ).
For inward rays, for which θ = π / 2 → π,  I(τ) = I –(τ).
From this starting point, we can determine the mean intensity (using Equation 2.2):

Eq. 2.126 

� 

J(τ ) = 1
4π

I dω
4π∫ = 1

2
I +

0

1∫ dµ + 1
2

I −
−1

0∫ dµ = 1
2
I + dµ

0

1∫ + 1
2
I − dµ

−1

0∫

Eq. 2.127 J(τ) = 1/2 [I ++ I – ]

The flux can be found in a similar fashion:

Eq. 2.128 

� 

F(τ ) = I µ dω
4π∫ = 2π I +

0

1∫ µ dµ + 2π I −
−1

0∫ µ dµ = 2π I + µ dµ
0

1∫ + I − µ dµ
−1

0∫[ ]
Eq. 2.129 F(τ ) = 2π I + 1

2
⎛
⎝⎜

⎞
⎠⎟ + I

− −1
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= π [I +(τ) – I –(τ) ]  = constant = F0 

This result indicates that the difference between the outward intensity and the inward 
intensity is a constant.  Even though each of these intensities varies with optical depth, the 
difference between them is the same throughout the atmosphere.  

We can represent this progression in a series of diagrams, in which semicircles indicate the 
inward and outward radiation, with the radius of each semicircle proportional to the intensity.  In 
moving from left to right in Figure 2.18, the stellar radius increases, indicating a higher level in 
the atmosphere and consequently a lower optical depth.  As the optical depth decreases, so do 
both I + and I –, but the difference between them is constant.  
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Figure 2.18:  Illustration of the Eddington approximation
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The last sketch on the right represents the top of the atmosphere, where τ  = 0 and I – drops to 
0.  At this point, the flux is equal to π times the outward intensity:

Eq. 2.130 π I +(0) = F0

The Eddington approximation also allows the radiation pressure integral to be solved:

Eq. 2.131 

� 

K(τ ) = 1
4π

I µ2dω
4π∫ = 1

2
I +

0

1∫ µ2dµ + 1
2

I −
−1

0∫ µ2dµ = 1
2
I + µ2dµ

0

1∫ + 1
2
I − µ2dµ

−1

0∫

Eq. 2.132 

� 

K(τ ) = 1
2
I + µ 3

3
⎛ 

⎝ 
⎜ 

0

1

+ I − µ 3

3
⎛ 

⎝ 
⎜ 

−1

0⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 1
6
I + + I −[ ] = 1

3
J(τ )

Solution of the differential equation 2.124 resulted in a constant, which can be evaluated by 
examining boundary conditions for K(τ).  We can obtain the necessary  boundary condition for the 
top of the atmosphere as follows:

As already noted, we have I –(0) = 0, which leads to J(0) = 1/2 [I +(0) +I – (0)] = 1/2 I +(0).  
Applying Equation 2.130, we can link the mean intensity to the flux:

Eq. 2.133 

� 

J(0) = 1
2
I + (0) = 1

2
F0
π

Then evaluating Equation 2.132 at the top of the atmosphere gives a value for K(0):

Eq. 2.134 

� 

K(0) = 1
3
J(0) = F0

6π

We can also evaluate K(0) using Equation 2.125:

Eq. 2.125 K(τ ) = F0

4π
τ + constant    ⇒ K(0) = constant = F0

6π

The functions K(τ) and J(τ) can then be written explicitly:

Eq. 2.135 

� 

K(τ ) = F0
4π

τ + 2
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

Eq. 2.136 

� 

J(τ ) = 3F0
4π

τ + 2
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = S(τ )
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(The function J(τ)  is equal to S(τ), as one of the conditions of radiative equilibrium.)
With this result, we have the source function S(τ) = 3/4π F0(τ  +2/3) for the gray case (κν = κ) 

using the Eddington approximation (I + and I – each constant  over a hemisphere).  We can carry it 
one step further if we add the condition of LTE (local thermodynamic equilibrium), meaning the 
radiation is in equilibrium with the gas.  In this case, the source function is given by the Planck 
function:

Eq. 2.137 

� 

S = B(T ) = σT 4

π

Inserting this result into Equation 2.136 gives a relation for the temperature as a function of 
optical depth:

Eq. 2.138 

� 

3F0
4π

τ + 2
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

σ T (τ )4

π

The flux can be written in terms of the effective temperature (F0 ≡ σTe
4), and this allows us 

to formulate equation 2.138 using only temperatures:

Eq. 2.139 T (τ )4 = 3
4

τ + 2
3

⎛
⎝⎜

⎞
⎠⎟ Te

4 = 1
2
+ 3
4
τ⎛

⎝⎜
⎞
⎠⎟ Te

4

At what optical depth is the temperature equal to the effective temperature?  Equation 2.139 
gives T(τ) = Te at τ  = 2/3 .  Although this result has been derived for a particular model (the gray 
case, with the Eddington approximation), it is often used as an approximation for stellar 
atmospheres in general.

Using Equation 2.139, we can determine a temperature at the top of the atmosphere, at τ = 0:

Eq. 2.140 T0
4 ≡ T (0)4 = 1/2 Te 

4

For the Sun, with an effective temperature of 5770 K, the value of T0 is 4850 K.  However, it 
should be noted that this temperature is not particularly meaningful or useful.

We can write the source function for the gray  case with the Eddington approximation in 
terms of either the effective temperature or the flux:

Eq. 2.141 

� 

S(τ ) = σ Te
4

π
1
2

+ 3
4
τ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = F0

2π
+ 3F0
4π

τ

In either case, it is clear that the source function is a linear function of the optical depth:

Eq. 2.142 S(τ) = a + bτ

Limb Darkening
We can insert this equation for the source function into our solution of the transfer equation 

to obtain predictions that can then be compared with observations.  Equation 2.91 gives the 
intensity as a function of optical depth, but it is also dependent upon the angle of the ray, making 
I(τ) really  I(τ, µ).  For observational purposes, we would be looking at the rays that  emerge from 
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the top of the atmosphere, where τ = 0, making I(0, µ) the function of interest; this would give us 
the variation in intensity across the disk of the star.  Unfortunately, most stars occur only as 
points, for which intensity  cannot be measured; but for the Sun, we can measure intensities 
across the disk and compare them with our predictions.

We may begin with Equation 2.95, which gives the intensity at the top of the atmosphere:

Eq. 2.95 

� 

Iν (0) = Iν
out (0) = Sν0

∞∫ (tν )e
−tν µd tν µ

We now insert the source function (for the gray case, with the Eddington approximation): 

Eq. 2.143 

� 

I(0,µ) = (a+bt)
0

∞∫ e−t µd t µ = a
0

∞∫ e−t µd t µ + µ b t
µ0

∞∫ e−t µd t µ

Substituting x = τ/µ gives a simpler equation:

Eq. 2.144 

� 

I(0,µ) = a
0

∞∫ e−xdx+bµ x
0

∞∫ e−xdx

Performing the integrals yields an interesting result:

Eq. 2.145 

� 

I(0,µ) = a −e−x( 0

∞
+bµ −e−x (x+1)( 0

∞
= a+bµ

Inserting the values for the constants a and b from Equation 2.141 gives the following:

Eq. 2.146 

� 

I(0,µ) = a+bµ = F0
2π

+ 3F0
4π

µ

We may use this equation to predict the intensity at the surface of the Sun at different points 
across the disk.  At the center of the disk, rays that reach us are emerging parallel to the normal 
with θ = 0°, making µ (= cos θ) = 1:

Eq. 2.147 

� 

I(0,1) = F0
2π

+ 3F0
4π

= 5F0
4π

At the limb of the Sun, rays that reach us are emerging perpendicular to the normal with θ = 
90°, making µ = 0:

Eq. 2.148 

� 

I(0,0) = F0
2π

The intensity at the limb is clearly less than the intensity at the center of the disk, making the 
limb appear darker – a phenomenon known as limb darkening.  It will be most convenient to 
remove the flux from the expression by dividing equation 2.146 by the maximum value, as limb 
darkening is a relative effect.  This will produce the normalized limb-darkening function:

Eq. 2.149 

� 

I(0,µ)
I(0,1)

= 2
5

+ 3
5

µ

This function has a value of 1 at the center of the disk and 2/5 at the limb; obviously the 
mathematics confirms limb darkening.  Is there an intuitive reason why it should occur?
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Consider our line of sight through the star's atmosphere.  We can see along this line only until 
an optical depth of infinity is reached; photons emitted from deeper in the star than this have no 
chance of traveling to us along this line.  Figure 2.19a shows such a ray at the center of the disk, 
emitted along the normal towards us.  The deepest point  from which photons emerge is the base 
of the photosphere, marked τ = ∞.  

In Figure 2.19b, the ray  emerges at an angle closer to 90° from the normal as it travels from 
the limb towards us.  This ray's path through the atmosphere (from τ = ∞ to τ = 0) is longer 
because, being higher in the atmosphere, it passes through lower densities, and τ ≈ κρr.  For 
lower values of ρ, larger values of r will be needed to achieve the same τ.  

Figure 2.19:  Rays emerging from the center of the disk (a) and from the limb (b).

 a   
• •

! = 0
! ="

             b  

! = 0! ="
• •

Also note that the origin (τ = ∞) of the ray in Figure 2.19b is higher in the atmosphere, where 
the temperature – and thus, the source function – will be lower.  This means that when looking at 
the limb, we are viewing photons that were emitted by gas with a lower source function 
compared to those coming from the center of the disk.  Because the source function is less, the 
intensity will be lower and the limb will appear darker.

The Next Step
The problem we are preparing to solve using radiative transfer is the determination of the 

structure of the photosphere.  This means that we want to find out how temperature (T), pressure 
(P), and density (ρ) of the gas vary with photospheric depth (x) and optical depth (τ).  We now 
have some radiative transfer equations that provide these links; however, these equations involve 
quantities that depend on each other in an often complicated manner.  For example, the optical 
depth is a function of density, opacity, and radius, while the opacity  is a function of density, 
temperature, and composition.  And we have just  found that temperature is a function of optical 
depth; in short, everything is interrelated.

The key to this enterprise is the opacity (κ), which depends on the properties of matter.  
Therefore, we will need to examine atoms to see how they relate to radiation –  to find out how 
absorption occurs.  This will be done in the next chapter.
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CHAPTER 3:  Atomic Structure
In Chapter 2, we allowed for radiation to interact  with matter, and we permitted the 

interaction to be dependent on the frequency of the radiation (although we found it simpler to 
ignore this dependency).  In this chapter, we will investigate the nature of matter and how its 
structure makes it possible for photons and atoms to relate to each other.

One-Electron Atoms
At the start of the 20th century the structure of the atom was still unclear; the electron had 

just been discovered in 1897, but  the proton would not be identified until 1918.  With this 
minimal knowledge of the participant particles, physicists were hard pressed to explain the 
interactions between radiation and matter that had been observed for the previous few decades – 
interactions that were clearly frequency (or wavelength) dependent and varied from element to 
element.  An empirical formula had been developed that predicted the wavelengths of hydrogen 
emission lines, but a suitable theoretical model of even this simplest atom was not available.

The Bohr Model
In 1913 Niels Bohr proposed a model of the hydrogen atom that filled this gap reasonably 

well.  The Bohr model applies only to single-electron atoms and ions and does not predict all the 
observed spectral features, but it still is quite useful as a first approximation.

The Bohr model of the atom pictures the negatively charged electron (with mass me and 
charge q) moving at speed v in a circular orbit of radius r about a positively  charged nucleus 
(with mass mnuc and charge Q), as shown in Figure 3.1a.  The two particles are held together by 

the electrostatic force between them, which is given by Coulomb's law:  F = Qq/r2.
We note immediately that this is another example of the two-body problem with a central 

force.  In such problems, both particles will orbit about their common center of mass – an 
unnecessary  complication we choose to avoid.  We can do this by  transforming to the equivalent 
reduced mass problem, in which the stationary nucleus, now with mass M = mnuc + me , is 
orbited by the electron, now with the reduced mass m' = memnuc/(me + mnuc), as shown in Figure 
3.1b.
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Figure 3.1:  The Bohr model:  (a) as a two-body problem; (b) as a reduced mass problem

a

r

v –e

+Ze

me

mnuc

                b
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+Ze

m'
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The charges are unchanged by  this transformation;  we will assign the electron a charge of q 
= – e (where e is the fundamental electron charge*), and the nuclear charge will be Q = +Ze 
(where Z is the atomic number of the atom).  The analysis then proceeds as follows.

The magnitude of the force between the nucleus and the electron is given by Coulomb's law:

Eq. 3.1  

� 

F = Qq
r2

= (Ze)(−e)
r2

= Ze2

r2

And the magnitude of the acceleration of a particle moving at speed v in a circular path of 
radius r is as follows:

Eq. 3.2  a = v
2

r

The force and the co-linear acceleration it produces are linked by Newton's second law of 
motion (F = ma), where the reduced mass m' is used:

Eq. 3.3  Z e2

r2
= ′m v2

r
    or   ′m v2 = Z e2

r

We can also obtain expressions for the energy  of this two-body system.  The kinetic energy is 
as expected:

Eq. 3.4  KE = 1
2

′m v2

The relevant potential energy is the electrostatic potential energy  (as gravitational potential 
energy will be negligible):

Eq. 3.5  

� 

PE = Qq
r

= − Ze
2

r

And the total energy of the system is the sum of these two:
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Eq. 3.6  E = KE + PE = 1
2

′m v2 − Ze
2

r

We now substitute Equation 3.3 into this expression:

Eq. 3.7  E = 1
2

Ze2

r
⎛
⎝⎜

⎞
⎠⎟
− Ze

2

r
= − 1

2
Ze2

r

This result shows that the total energy is a function of the orbital radius, with higher energy 
orbits being found at greater radii.  However, there were indications from spectral analysis that 
only certain orbits might be available to the electron.  There were also problems with a classical 
model involving an orbiting electron, which – because of its acceleration – must radiate energy.  
In such a system, the atom would constantly  lose energy and the electron must spiral into the 
nucleus, destroying the atom.  

Bohr got around this difficulty by  postulating the quantization of angular momentum in 
the atom, requiring that the angular momentum of the orbiting electron (L) be an integral 
multiple of a constant:  h/2π ≡ ħ (h-bar), where h is Planck's constant*.  The quantization 
equation introduces the quantum number n:

Eq. 3.8  L ≡ m' v r = nħ   where n = 1, 2, 3, ...

This requirement provides for discrete orbits in the atom, and an electron in one of these 
orbits does not radiate as predicted classically.

The de Broglie Wavelength
An alternative way to view this requirement was given in 1923 by  Louis de Broglie, who 

proposed that matter could behave as a wave, just as waves sometimes behave as particles of 
matter.  The de Broglie wavelength assigned to a particle is determined by  the particle's 
momentum p, using the same relation that links the momentum and wavelength of a photon:

Eq. 3.9  

� 

pphoton = E
c

= h
λ

Applying this relation to a particle of mass m' moving at a speed v gives the desired result:

Eq. 3.10 λ = h
p
= h

′m v

Now suppose the orbiting electron is exhibiting its wavelike properties; instead of a particle, 
we can imagine a wave pattern traveling around and around the orbit.  At each point in the orbit, 
the amplitude of the wave will be the sum of all the waves that overlap there.  If the phase of 
each overlapping wave is the same at a given point, then constructive interference will occur and 
a standing wave – equivalent to an existing particle – will be produced, as shown in Figure 3.2.  
However, if the phase of each successive wave is even slightly  different, then the waves will 
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interfere destructively and no standing wave will occur; this is equivalent to saying that no 
particle can exist in such an orbit.

The condition for constructive interference is that the circumference of the orbit should be an 
integral number of de Broglie wavelengths:

Eq. 3.11 2π r = nλ = nh
′m v

This leads immediately to the quantization requirement of Equation 3.8.  Figure 3.2 shows 
the fourth orbit of the Bohr atom, for which the circumference is equal to four de Broglie 
wavelengths.

Figure 3.2:  Standing waves in an orbit with n = 4

Now utilizing Equation 3.8 we can write the speed in terms of the radius:

Eq. 3.12 
 
v = n

′m r

Substituting this expression into Equation 3.3 gives the following:

Eq. 3.13 
 
′m n

′m r
⎛
⎝⎜

⎞
⎠⎟
2

= Z e2

r

Simplification of this equation yields the quantization of the orbital radii:

Eq. 3.14 
 
rn =

n22

Z e2 ′m

Substitution of this expression into Equation 3.7 gives the quantization of the energy:

Eq. 3.15 
 
E = − 1

2
Z e2

r
= − 1

2
Z e2 Z e2 ′m

n22
⎛
⎝⎜

⎞
⎠⎟
= − Z

2e4 ′m
22n2

= En

Thus both the orbital radius and the energy of one-electron atoms are quantized.  We can 
simplify these rules as follows:
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Eq. 3.16 

� 

rn = n2

Z
ro   where 

 
ro =

2

e2 ′m

Eq. 3.17 

� 

En = − Z
2

n2
Eo  where 

 
Eo =

e4 ′m
22

For hydrogen, Z = 1, giving the following values for the first few orbits:

  r = ro, 4ro, 9ro, 16ro, ... and  
  

� 

E = −Eo , −
Eo

4
, − Eo

9
, − Eo

16
,…

Figure 3.3 depicts the first four hydrogen orbits in the Bohr model, with relative radii of 1, 4, 
9, and 16.

Figure 3.3:  The first four hydrogen Bohr orbits (nucleus not shown)

Figure 3.4 is a one-dimensional graph of the first six hydrogen energy levels predicted by the 
Bohr model; the 'points' on the graph are extended into horizontal lines, which will be utilized 
shortly.

Figure 3.4:  Hydrogen energy levels

E
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n = 2

n = 3
n = 4
n = !0

–Eo

Note that  all of the energy levels are negative; this is because each energy level represents a 
bound orbit, for which the total energy must be negative.  Note also that as n increases to ∞, the 
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energy approaches zero; in practice, n never gets this big, as the radius – which increases as n2 – 
would become infinitely large and the atom would fill the universe.

The same pattern of energy levels exists for other one-electron atoms (ions); the energy scale 
will be different however, being modified by different factors of Z and m'.

Electronic Transitions
An electron existing in one of these discrete orbits maintains a constant energy; however, the 

electron can change its energy by moving to a different orbit.  A transition to a lower orbit will 
require that the electron lose energy, while transition to a higher orbit will involve an increase in 
energy.  We can use Equation 3.17 to write an expression for the change in energy associated 
with a transition between two levels:  the upper level (n) and the lower level (m). (Note that in 
this case, m is a quantum number, rather than mass.)

Eq. 3.18 

� 

ΔEnm = En −Em = −Z 2Eo
1
n2

− 1
m2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

For the hydrogen atom, Z = 1, and the energy change is as follows:

Eq. 3.19 

� 

ΔEnm = Eo
1
m2 −

1
n2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

As written, this quantity is always positive (because n > m).  As noted above, this amount of 
energy must be lost in a downward electron transition or gained in an upward transition.  The 
atom can gain or lose energy  during collisions with other atoms or during interactions with 
photons.  It is the photon interaction that interests us.

An atom may gain energy from the radiation field by absorbing a photon, or it may lose 
energy to the radiation field by  emitting a photon.  Whether performing absorption or emission, 
an electron undergoing a transition between two orbits must interact with a photon of a very 
specific energy – equal to the transition energy given by Equation 3.19.

Eq. 3.20 ΔEnm = Ephoton =hv = hc/λ

This allows us to link the transition quantum numbers (n and m) to a particular photon 
wavelength:

Eq. 3.21 hc
λnm

= Z 2Eo
1
m2 −

1
n2

⎛
⎝⎜

⎞
⎠⎟

We can solve this for the transition wavelength:

Eq. 3.22 
 
λnm = hc

Z 2Eo

1
m2 −

1
n2

⎛
⎝⎜

⎞
⎠⎟
−1

= 2hc2

Z 2e4 ′m
1
m2 −

1
n2

⎛
⎝⎜

⎞
⎠⎟
−1

= 4π 3c
Z 2e4 ′m

1
m2 −

1
n2

⎛
⎝⎜

⎞
⎠⎟
−1

This formula can be simplified if we define the Rydberg constant for hydrogen (for which 
Z = 1):
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Eq. 3.23 
 
RH ≡ e4 ′m

4π 3c

This result produces the Rydberg formula for hydrogen (which was derived empirically 
from spectral data in 1888 – 25 years before the Bohr model):

Eq. 3.24 

� 

λnm = 1
RH

1
m2 −

1
n2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
−1

 or 1
λnm

= RH
1
m2 −

1
n2

⎛
⎝⎜

⎞
⎠⎟

At this point, we will illustrate our progress by  examining the numerical values of some of 
the quantities of interest for hydrogen.  These, of course, depend on the values of the basic 
constants employed.  Three sources are presented in Table 3.1 for comparison:  Allen (1973), 
Cox (2000), and NIST (2006)*.  Figures in italics are calculated values.

Table 3.1:  Calculated values for hydrogen

 Source Allen 1973 Cox 2000 NIST 2006
 e 4.80325e–10 4.8032068e–10 4.80320427e–10 esu
 eV 1.602192e–12 1.60217733e–12 1.602176487e–12 ergs
 h 1.05459e–27 1.05457266e–27 1.054571628e–27 erg-s
 c 29979250000 29979245800 29979245800 cm/s
 mp 1.672661e–24 1.6726231e–24 1.672621637e–24 g
 mn ––– 1.6749286e–24 1.674927211e–24 g
 me 9.10956e–28 9.1093897e–28 9.10938215e–28 g
 m' 9.10460e–28 9.1044313e–28 9.10442373e–28 g
 ro 5.29463e–9 5.2946545e–9 5.29465407e–9 cm
 Eo 2.17874e–11 2.1786876e–11 2.17868542e–11 ergs
 Eo 13.5985 13.59829 13.5982861 eV
 E1 –13.5985 –13.59829 –13.5982861 eV
 E2 –3.3996 –3.39957 –3.3995715 eV
 E3 –1.5109 –1.51092 –1.5109207 eV
 RH 109678 109677.58 109677.5835 cm–1 
 1/RH 911.759 911.76334 911.763341 Å
As the precision with which the various constants are known continues to increase, the values 

of calculated quantities will change accordingly.  We will generally not concern ourselves with 
attaining extremely precise results, but we will use enough precision to illustrate each concept 
sufficiently.

Now armed with the Rydberg formula and the Bohr model, we are prepared to investigate the 
various transitions available to the hydrogen electron.  For historical reasons, these transitions 
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have been grouped together into series, according to their lower levels (m).  Those for which the 
lower level is the first  level (m = 1) make up the Lyman series;  m = 2 for the Balmer series, 3 for 
the Paschen series, 4 for the Brackett series, 5 for the Pfund series, and so on.  For each series, 
the quantum number of the upper level may take on values ranging from n = m + 1 to n = ∞, 
which represents the series limit.

Figure 3.5:  Hydrogen transitions – the Lyman and Balmer series
 !
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Figure 3.5 shows the first four transitions of the Lyman series (Lyα: 1→2, Lyβ: 1→3, Lyγ: 
1→4, and Lyδ: 1→5) and the Balmer series (Hα: 2→3, Hβ: 2→4, Hγ: 2→5, and Hδ: 2→6).  
Wavelengths for each series can be calculated with the Rydberg formula (Equation 3.24).  For the 
Balmer series, m = 2 and the relevant equation is as follows:

Eq. 3.25 

� 

λn = 1
RH

1
4
− 1
n2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
−1

Using constants from each of the three sources previously  noted, the Balmer wavelengths are 
calculated in Table 3.2.

We note that as the precision with which the various constants are known has improved over 
the years, the precision with which the Balmer wavelengths can be calculated has also improved.  

We now compare the wavelengths from Table 3.2 with those found in essentially any book – 
such as Cox (2000) page 70, shown in the last column of Table 3.2.  These values are all 
conspicuously  lower than the calculated wavelengths in Table 3.2; one would expect better 
agreement, especially given the simplicity of the Rydberg formula.  What could be wrong?

The answer turns out to be relatively straightforward.  The values obtained by calculation 
with the Rydberg formula are vacuum wavelengths, while those listed in most books are the 
wavelengths in air.  In spectroscopy, it  is customary to report air wavelengths for λ > 2000 Å 
simply  because most measurements are performed in air; however, vacuum wavelengths are 
usually given for λ < 2000 Å because photons in this region tend to be absorbed by air.
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Table 3.2:  Balmer wavelengths
 Source Allen (1973) Cox (2000) NIST (2006)   Cox (2000) p70
 RH 109678 109677.58 109677.5835 cm–1 

 1/RH 911.759 911.76334 911.763341 Å

  calculated calculated calculated   tabulated
 n λn λn λn   λn

 3 6564.66 6564.6960 6564.69606 Å Hα 6562.80
 4 4862.71 4862.7378 4862.73782 Å Hβ 4861.32
 5 4341.71 4341.7302 4341.73020 Å Hγ 4340.46
 6 4102.92 4102.9350 4102.93503 Å Hδ 4101.73
 ∞ 3647.04 3647.0534 3647.05337 Å Limit 3646

The conversion from the calculated vacuum wavelength to the measured air wavelength 
involves the index of refraction of air – usually  denoted n (not to be confused with the quantum 
number n).  Because the value of the index of refraction varies with temperature and pressure, we 
normally use the value for air at standard temperature and pressure:  15°C and 1 atmosphere.  
Cox (2000) gives several formulae for this index, but one has incorrect coefficients.  The formula 
we will use is as follows:

Eq. 3.26 

� 

n =1+ A+ B
C −σ 2 + D

E −σ 2  where 

� 

σ ≡ 1λ

The coefficient values depend on the units of λ as shown in Table 3.3.

Table 3.3:  Index of refraction coefficients
 Cox (2000) page: 69 170 (modified) 262
 lambda units: cm Å nm
 A 6.43280e–5 6.43280e–5 6.43280e–5
 B 2.94981e+6 2.94981e–10 2.94981e–8
 C 1.46000e+10 1.46000e–6 1.46000e–4
 D 2.55400e+4 2.55400e–12 2.55400e–10
 E 4.10000e+9 4.10000e–7 4.10000e–5

Table 3.4:  Balmer wavelengths in air (calculated with NIST (2006) values)
 λ (vacuum) n λ (air) Moore (1972) difference
Hα 6564.69606 1.00027624 6562.88312 6562.817 0.066
Hβ 4862.73782 1.00027934 4861.37984 4861.332 0.048
Hγ 4341.73020 1.00028114 4340.50990 4340.468 0.042
Hδ 4102.93503 1.00028222 4101.77743 4101.737 0.040
limit 3647.05337 1.00028497 3646.01436 3645.981 0.033
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Now, applying the modified coefficients (for λ in Å) to determine the value of the index of 
refraction at each of the Balmer wavelengths, we can obtain the air wavelengths shown in Table 
3.4.  These are compared with the observed Balmer wavelengths given in Moore (1972) and 
found to be quite reasonable.

There are a few related terms that can be mentioned here (with values from NIST (2006)*):
• The Bohr radius (ao) is the radius of the first orbit of an infinite mass H atom (for which 

the reduced mass is equal to the electron mass):  
 
ao =

2

e2me

= 0.5291772083 Å

• The Rydberg constant for an infinite mass atom (R∞) is calculated by setting the reduced 

mass equal to the electron mass:  
 
R∞ ≡ e4me

4π 3c
 = 109737.31568549 cm–1

Other units of energy – besides ergs and eVs – occasionally are utilized:

• The Rydberg (ryd):   hcR∞ = 2.17987190 x 10–11 erg  = 13.60569172 eV

• The atomic unit:  e2/ao = 2hcR∞ = 2 ryd = 27.21138344 eV

We are interested in the absorption of photons by  matter.  Which photons a hydrogen atom 
absorbs will depend on what level the electron occupies.  Given a set of hydrogen atoms, how 
many of them have an electron in level 1, level 2, level 3, etc.?  The answer to this question 
depends on the statistical weight of each level – the number of different ways an electron may 
occupy  the level – which is obtained from quantum numbers.  We can find the appropriate 
quantum numbers by examining a quantum mechanical model  of the hydrogen atom, obtained 
by solving the Schrödinger equation.

The Quantum Mechanical Model
Quantum mechanics was developed to provide a means of understanding the physics of very 

small objects – such as atoms.  We will make use of the particle/wave duality of matter and 
presume that the state of the hydrogen atom can be described by a wave function, which will be 
the solution to a differential equation that is based on the energy of the atom.  To begin, let us 
note that the total energy of the atom is equal to the sum of the kinetic energy and the potential 
energy (as in Equation 3.6):

Eq. 3.27 KE + PE = E

We now substitute expressions for the kinetic and potential energies:

Eq. 3.28   

� 

PE = V ( r ,t)      (Potential energy is a function of position vector and time.)

Eq. 3.29 
 
KE = 1

2
′m v2 =

p2

2 ′m
     (  

� 

 p  is the momentum vector.)

Inserting these into Equation 3.27 produces a classical expression for the energy (in which 
the left side of the equation is known as the Hamiltonian):
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Eq. 3.30  
 

p2

2 ′m
+V (r , t) = E

Now we replace the momentum (  

� 

 p ) and energy (E) with their equivalent quantum 
mechanical operators.  (Operators perform some operation – such as differentiation – on the 
wave function to yield the quantity in question.)  These operators are as follows:

•   

� 

 p ⇒−i∇

•   

� 

 p 2 ⇒−2∇2  (where ∇2 is the Laplacian)

•   

� 

E⇒ i ∂
∂t

 

These will operate on the wave function,   

� 

Ψ( r ,t) .  Inserting these into Equation 3.30 
transforms it into the Schrödinger equation:

Eq. 3.31 
 
− 

2

2 ′m
∇2Ψ(r , t)+V (r , t)Ψ(r , t) = i ∂Ψ(

r , t)
∂t

This form of the equation is perfectly  general, allowing for potential functions of any type.  
However, very often we will deal with a potential function that is time-independent – meaning 
that   

� 

V = V ( r ) .  If this is the case, then energy eigenfunctions exist; this means that the operator – 
in this case the Hamiltonian – operating on the wave function Ψ will produce a constant – in this 
case, the total energy E – multiplied by the wave function (HΨ = EΨ, where Ψ is the 
eigenfunction and E is the eigenvalue). These eigenfunctions will have the following form:

Eq. 3.32   

� 

Ψ( r ,t) = u( r )e−iEt 

We can illustrate this by  inserting this wave function and the time-independent potential into 
Equation 3.31 and simplifying:

Eq. 3.33 
 
− 

2

2 ′m
∇2u(r )e− iEt  +V (r )u(r )e− iEt  = i ∂u(

r )e− iEt 

∂t

Eq. 3.34 
 
− 

2

2 ′m
e− iEt ∇2u(r )+V (r )u(r )e− iEt  = iu(r ) de

− iEt 

dt
= iu(r ) −iE


⎛
⎝⎜

⎞
⎠⎟ e

− iEt 

Dividing through by the exponential eliminates time from the equation:

Eq. 3.35 
 
− 

2

2 ′m
∇2u(r )+V (r )u(r ) = Eu(r )      or

Eq. 3.36 
 
∇2u(r )+ 2 ′m

2
E −V (r )[ ] u(r ) = 0

This is the time-independent Schrödinger equation, a three-dimensional differential 
equation.  Its solution is   

� 

u( r ), the spatial component of the wave function, which is a function of 
the three spatial coordinates.  We are free to choose a suitable three-dimensional coordinate 
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system to use in describing the hydrogen atom; most people find spherical polar coordinates (r, θ, 
ϕ) to be the most logical choice.

Having selected a coordinate system, we can now write the Laplacian; for spherical polar 
coordinates it is as follows (applied to our function   

� 

u( r )):

Eq. 3.37 
 
∇2u(r ) = 1

r
∂2

∂r2
[r u(r )]+ 1

r2
1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2θ

∂2

∂φ 2
⎡

⎣
⎢

⎤

⎦
⎥u(
r )

We will now define the angular portion of the Laplacian (inside the brackets [...]) as the 
operator Ω (Note:  this Ω is not a solid angle).  Equation 3.37 is then simplified:

Eq. 3.38 
  

� 

∇2u( r ) = 1
r
∂2

∂r2
[r u( r )]+ 1

r2
Ωu( r )

The Schrödinger equation is then written as follows:

Eq. 3.39 
 

1
r
∂2

∂r2
[r u(r )]+ 1

r2
Ωu(r )+ 2 ′m

2
E −V (r )[ ] u(r ) = 0

We now make two assumptions about our problem:  first, that the potential function is 
spherically  symmetric (  

� 

V ( r ) = V (r)), having no angular dependence; and second, that we can 
write the spatial portion of the wave function as the product of a radial function (R) and an 
angular function (Y), in hopes of performing separation of variables:

Eq. 3.40   

� 

u( r ) = R(r)Y (θ,φ)

Making these substitutions into Equation 3.39 yields the following:

Eq. 3.41 
 

1
r
∂2

∂r2
[r R(r)Y (θ,φ)]+ 1

r2
ΩR(r)Y (θ,φ)+ 2 ′m

2
E −V (r)[ ] R(r)Y (θ,φ) = 0

The partial derivatives operate only on their respective components of   

� 

u( r ):

Eq. 3.42 
 
Y (θ,φ) 1

r
∂2

∂r2
[r R(r)]+ R(r)

r2
Ω Y (θ,φ)+ 2 ′m

2
E −V (r)[ ] R(r)Y (θ,φ) = 0

Next we divide through the equation by R(r)Y(θ, ϕ)/r2:

Eq. 3.43 
 
r2 1

rR(r)
∂2

∂r2
[r R(r)]+ 2 ′m

2
E −V (r)[ ]⎧

⎨
⎩

⎫
⎬
⎭
+ Ω Y (θ,φ)

Y (θ,φ)
= 0

We now note that each of the two terms in this equation contains different variables; the first 
term has only the radial coordinate while the second term has only angular coordinates.  If we 
move the angular term to the right side of the equation, it will be clear that the left side is 
dependent only on r and its derivatives while the right side is dependent only on θ and ϕ and 
their derivatives.
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Eq. 3.44 
 
r2 1

rR(r)
∂2

∂r2
[r R(r)]+ 2 ′m

2
E −V (r)[ ]⎧

⎨
⎩

⎫
⎬
⎭
= − Ω Y (θ,φ)

Y (θ,φ)
  or  

� 

f (r) = g(θ,φ)

These two completely  independent functions can only  be equal for all values of r, θ, and ϕ if 
each function is equal to the same constant.  With incredible foresight, we will set this constant 
equal to ℓ(ℓ +1).  This gives us two separate equations – one radial and one angular:

Eq. 3.45 
 
r2 1

rR(r)
∂2

∂r2
[r R(r)]+ 2 ′m

2
E −V (r)[ ]⎧

⎨
⎩

⎫
⎬
⎭
= ( +1)  (the radial equation)

Eq. 3.46 
  

� 

−Ω Y (θ,φ)
Y (θ,φ)

= (+1)  (the angular equation)

We will rewrite the radial equation, changing the partial derivatives into full derivatives:

Eq. 3.47 
 

1
r
d 2

dr2
[r R(r)]+ 2 ′m

2
E −V (r)[ ]R(r) = ( +1) R(r)

r2

The angular equation requires further separation of variables.  We begin by assuming that the 
angular component of the wave function can be written as a product of two angular functions, 
each dependent only on a single variable:

Eq. 3.48 Y(θ, ϕ) = Θ(θ) Φ(ϕ)

Inserting this into Equation 3.46, and also using the full form of Ω, we find the following:

Eq. 3.49 
 

−1
sinθ

∂
∂θ

sinθ ∂
∂θ
[Θ(θ)Φ(φ)]⎛

⎝⎜
⎞
⎠⎟ −

1
sin2θ

∂2

∂φ 2
[Θ(θ)Φ(φ)] = ( +1)Θ(θ)Φ(φ)

We can again separate variables by  multiplying through by 

� 

sin2θ
Θ(θ)Φ(φ)

 and rearranging, 

collecting each variable on opposite sides of the equation:

Eq. 3.50 
 
− sinθ
Θ(θ)

∂
∂θ

sinθ ∂
∂θ

Θ(θ)⎛
⎝⎜

⎞
⎠⎟ − ( +1)sin

2θ = 1
Φ(φ)

∂2

∂φ 2
Φ(φ)

Now the left side is a function of θ and its derivatives, while the right side is a function of ϕ 
and its derivatives.  This can only be true if each side equals the same constant, one that we will 
call –mℓ

2 .  Inserting this constant and converting partial derivatives gives two angular equations:

Eq. 3.51 
  

� 

d2

dφ2
Φ(φ) = −m

2Φ(φ)

Eq. 3.52 
 
− 1
sinθ

d
dθ

sinθ d
dθ

Θ(θ)⎛
⎝⎜

⎞
⎠⎟ +

m
2Θ(θ)
sin2θ

= ( +1)Θ(θ)
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These two equations, together with Equation 3.47 can be solved independently for the 
individual components of the wave function, which can then be multiplied together to give the 
complete wave function.  

We begin with Equation 3.51 because it is the simplest and can be solved by inspection:

Eq. 3.53 Φ(ϕ) = C1 e
imℓ (ϕ +C2)

We may choose the integration constant C2 to be 0, as there are no special ϕ values in the 
atom.  C1 is a normalization constant, to be determined shortly.

Eq. 3.54 Φ(ϕ) = C1 e
imℓ ϕ = C1(cos mℓ ϕ + i sin mℓ ϕ)

We will now put restrictions on the value of mℓ by applying the boundary condition that Φ(ϕ) 
= Φ(ϕ +2π); that is, the wave function must be in phase with itself after wrapping around the 
atom (recall the de Broglie requirement that the circumference of an orbit be an integral number 
of wavelengths).  This can be illustrated by examining the real part of the function:

Eq. 3.55 cos(mℓ ϕ) = cos(mℓ(ϕ +2π)) = cos(mℓ ϕ +2πmℓ)

This condition will be met if mℓ = 0, ±1, ±2, ±3, etc. – in short, if mℓ is an integer.  We can 
then identify  mℓ as a quantum number associated with the coordinate ϕ.  This component of the 
wave function can then be written as follows:

Eq. 3.56 
  

� 

Φm
(φ) = 1

2π
eimφ = 1

2π
cosmφ + i sinmφ( )

The value of the normalization constant C1 = 1 2π( )  is found by requiring that the 

probability  of the electron existing somewhere be equal to 1.  Mathematically, this is done by 
setting 

� 

Φ*
0

2π∫ Φdφ =1 (where Φ* signifies the complex conjugate of Φ) and solving for C1.

The solution for Θ(θ) is not so simple.  It can be found to be the following:

Eq. 3.57 
  

� 

Θm (θ )= (−m)!
(+m)!

2+1
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

1
2

P
m (cosθ )

Here Pℓ
m(cos θ) is the Associated Legendre Function; and  must be an integer, such that it 

takes on the following values:

Eq. 3.58 ℓ = |mℓ|, |mℓ| +1, |mℓ| +2, ...

Only for these values does the wave function remain finite.  (Infinite wave functions are 
highly impractical.)
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Legendre Function 

 
  

� 

P(x) = 1
2 !

d 

dx
x2 −1( )  (Spiegel 1968, p146)

Associated Legendre Function 

 
  

� 

P
m (x) = 1− x2( )m 2 d

mP (x)
dxm

  (Spiegel 1968, p149)

The solution of the radial equation requires that a potential energy function be defined; the 
most appropriate function in this case is the electrostatic potential from Equation 3.5:

Eq. 3.59 

� 

V (r) = − Ze
2

r

Insertion of this expression into Equation 3.47 and solving yields the following:

Eq. 3.60 
  

� 

Rn(r) = − 2Z
nao

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2 n − −1( )!
2n n+ ( )![ ]3

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1
2

e
− Zr
nao 2Zr

nao

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 


Ln+
2+1 2Zr

nao

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

The function 
 
Ln+
2+1 2Zr

nao

⎛
⎝⎜

⎞
⎠⎟

 is an Associated Laguerre Polynomial, with the allowed values of 

n being n = ℓ +1, ℓ +2, ℓ +3, ℓ +4 ... .

Laguerre Polynomial 

 Ln (x) = e
x dn

dxn
xne− x( )   where n = 0, 1, 2, ...  (Spiegel 1968, p153)

Associated Laguerre Polynomial 

 Ln
m (x) = dm

dxm
Ln x( )   where n, m = 0, 1, 2, ...   (Spiegel 1968, p155)

The angular components of the wave function combine to give what are known as the 
spherical harmonics Yℓmℓ(θ, ϕ):

Eq. 3.61 Yℓmℓ(θ, ϕ) = Θℓmℓ(θ) Φmℓ(ϕ)

The spherical harmonics are independent of the potential (V(r)).  They are eigenfunctions of 
the operator L2 and also of  Lz , where   

� 

 
L  is the orbital angular momentum operator   

� 

 
L =  r ×  p ( ):  

Eq. 3.62 L2Yℓmℓ(θ, ϕ) = ℓ(ℓ +1)Yℓmℓ(θ, ϕ)   and

Eq. 3.63 LzYℓmℓ(θ, ϕ) = mℓ Yℓmℓ(θ, ϕ)

We can then write the complete wave function for hydrogen:
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Eq. 3.64 Ψnℓmℓ(r, θ, ϕ) =Rnℓ(r) Yℓmℓ(θ, ϕ)

The three quantum numbers take on the following values:
•  n = 1, 2, 3, ...
•  ℓ = 0, 1, 2, ...(n –1)
•  mℓ = 0, ±1, ±2, ... ± ℓ

Examples of some of these wave functions are given by Rybicki & Lightman (1979):

Eq. 3.65 

� 

Ψ100 = 1
π

Z
ao

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2

e
−Zr ao  (for n = 1,  = 0, and mℓ = 0)

Eq. 3.66 Ψ200 =
1

4 2π
Z
ao

⎛
⎝⎜

⎞
⎠⎟

3
2

2 − Zr
ao

⎛
⎝⎜

⎞
⎠⎟
e
−Zr 2ao   (for n = 2,  = 0, and mℓ = 0)

Eq. 3.67 Ψ32±1 =
1

81 π
Z
ao

⎛
⎝⎜

⎞
⎠⎟

3
2 Z r

ao

⎛
⎝⎜

⎞
⎠⎟

2

e
−Zr 3ao sinθ cosθ e± iφ   (for n = 3,  = 2, and mℓ = ±1)

Quantum Numbers
Each quantum number is associated with a different spatial coordinate:

• n → r n is the principal quantum number, giving the total energy.
• ℓ → θ  is the azimuthal quantum number, giving the orbital angular momentum.

• mℓ → ϕ mℓ is the magnetic quantum number.

For each value of n, there are n values of .
For each value of , there are 2+1 values of mℓ .

For each value of n, there are n2 degenerate eigenfunctions (having the same energy), if the 
energy depends only on the value of n.

Quantum number combinations for the first three orbits are shown in Table 3.5.  Note that  for 
n = 1, there is only one combination; for n = 2, there are four combinations; for n = 3, there are 
nine combinations.  This means that the statistical weight of each level n – the number of 
different ways for an electron to be in that level – is n2.  Almost.  

Table 3.5:  Examples of valid quantum number combinations:
 n   mℓ 

 1 0 0
 2 0 0
 2 1 0, ±1
 3 0 0
 3 1 0, ±1
 3 2 0, ±1, ±2
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There is one more quantum number.  Electrons have a property called spin.  The spin 
quantum number is labeled s, and its value is always the same:  s = 1/2 .  Now spin is just a name; 
the electrons are not really spinning.  In fact, spin has no classical analog – it  is purely  quantum 
mechanical.  However, the manner in which spin enters into our discussion of the atom is 
somewhat reminiscent of a classical situation in astronomy.

A planet orbiting the Sun clearly has orbital angular momentum.  If the planet is also rotating, 
it will have some rotational angular momentum as well.  These two quantities can be added 
together vectorially to produce the total angular momentum for the planet.

In the atom, we already have the orbital angular momentum of the electron, linked to the 
quantum number .  We now add another component (spin) that also contributes to the angular 
momentum; we will refer to this contribution as the spin angular momentum.  Thus, the 
quantum numbers  and s play  somewhat similar roles in our discussion; and just as  is linked to 
the quantum number mℓ , the spin s will be linked to another quantum number called ms .

We have seen that mℓ may take on values up to ± and that mℓ values differ by integers; the 
same is true for ms , which may take on values up to ±s, with ms values differing by integer 
amounts.  Because s always has a value of 1/2 , the only allowable values of ms are ± 1/2 .  These 
are sometimes denoted as spin up and spin down; they  are also referred to as polarization 
states.

Specification of the state of a hydrogen atom thus requires values for four quantum numbers:  
n, , mℓ , and ms .  We have previously  found that the statistical weight of a particular energy  level 
n is n2, based on the first three quantum numbers.  With the inclusion of spin, we find that for 
each combination of spatial quantum numbers – for each electron orbital – there are two values 
for ms , doubling the overall statistical weight (gn = 2n2). 

With some understanding of the hydrogen atom, we are now ready to step  into the real world 
to consider the electronic structure of multi-electron atoms.

Multi-electron Atoms
Multi-electron atoms are more complicated, not only because there are more electrons to 

track, but also because the electrons interact with each other, through Coulomb's law.  
Fortunately we are able to construct  a successful model of such an atom by building on our 
existing quantum numbers and the structure they represent.

Pauli Exclusion Principle
In a multi-electron atom, each electron has a set  of four quantum numbers that define its 

position and momentum.  According to the Pauli exclusion principle, no two electrons may 
have the same set of quantum numbers; this is equivalent to requiring that no two electrons may 
be in the same place, doing the same thing, at the same time.

The quantum numbers already described are n, , mℓ , and ms ; but they may also be defined 
in a slightly different manner, as n, , j, and mj .  These relate to each other as follows:

Eq. 3.68 j =  ± s
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Eq. 3.69 mj = mℓ + ms

With this set, the quantum number j represents a combination of the orbital angular 
momentum and the spin angular momentum – the two quantities most critical to defining the 
electron's state.  This set provides a different – but equivalent – way of  looking at the atom.

Total Quantum Numbers
In a multi-electron atom, we need not keep track of each individual electron's angular 

momentum because the important quantities are the totals for all electrons in the atom.
Each electron has an orbital angular momentum vector   

� 

 
  (characterized by the quantum 

number ℓ) and a spin angular momentum vector   

� 

 s  (characterized by the quantum number s).  In 
a multi-electron atom, these vectors add (vectorially) to produce a total angular momentum for 
the atom.  There are two different ways of achieving this total.

We could vectorially add all of the individual orbital angular momentum vectors to obtain a 
resultant orbital angular momentum vector   

� 

 
L =

 
 ∑ , and we could do the same for the spin 

to find the resultant spin vector   

� 

 
S =  s ∑ .  Then we could add these vectors to obtain the total 

angular momentum vector   

� 

 
J =
 
L +
 
S .  This is called LS  coupling (or Russell-Saunders 

coupling), and it is valid for elements with low Z.  
For higher Z elements, we would first find a combined angular momentum for each electron 

(  

� 

 
j =
 
 +  s ) and then add these to obtain the total angular momentum   

� 

 
J =

 
j ∑ .  This is called jj 

coupling.  (Our work in this book will normally involve LS coupling.)
We now introduce the quantum numbers L, S, and J associated with the vectors   

� 

 
L ,
 
S , and   

� 

 
J .  

These must be distinguished from their individual-electron counterparts , s, and j.
• ℓ represents the orbital angular momentum of a single electron in the atom.
• L represents the total orbital angular momentum of all the electrons in the atom.
• Electrons with ℓ = 0 are called s electrons.  (Note: This s is not spin.)
• Electrons with ℓ = 1 are called p electrons.
• Electrons with ℓ = 2 are called d electrons.
• Electrons with ℓ = 3 are called f electrons.
These letters refer to sharp, principal, diffuse, and fundamental – terms derived from the 

appearance of spectral lines.  They can be applied to the figures from Table 3.5 to describe the 
types of electrons each shell – designated by the principal quantum number n and labeled by still 
another letter – can hold.

• The K (n = 1) shell can hold 2 s electrons total = 2 electrons
• The L (n = 2) shell can hold 2 s and 6 p electrons total = 8 electrons
• The M (n = 3) shell can hold 2 s, 6 p, and 10 d electrons total = 18 electrons
• The N (n = 4) shell can hold 2 s, 6 p, 10 d, and 14 f electrons total = 32 electrons
 total = 2n2 electrons
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Electron Configurations
In general, an atom will not have the appropriate number of electrons to fill each of its shells.  

The ground state of an atom – the lowest possible energy  configuration – will normally  involve 
filled inner shells with an unfilled outer shell.  We can specify what type of electrons make up 
the ground state of an element by listing the electron configuration as nℓ#, where # is the 
number of electrons with the n and  values given.  Examples are given in Table 3.6.

Table 3.6:  Ground state configurations
Element Configuration
H 1s1 
He 1s2 
Li 1s2 2s1 
Be 1s2 2s2 
B 1s2 2s2 2p1 
The key point in analyzing multi-electron atoms is that although the angular momenta of 

individual electrons change continually, the total angular momentum is constant.  (The individual 
 values may  change, but the value of L remains the same.)  How do the  values combine to give 
L?  How do the s values combine to give S?  We can find the answer by examining the values of  
ML = ∑ mℓ and MS = ∑ ms .  The process is as follows:

From the electron configuration, we have the values of n and ; the latter gives the allowable 
values of mℓ .  These can be added to give the value of ML , and this quantity  determines the value 
of L for the atom.  A similar analysis of the spin will yield the values of MS and S.

For example, consider the ground state of hydrogen, which has only one electron:  H 1s1.  
From the electron configuration we have n = 1, and the single s electron has  = 0.  The only 
value of mℓ available for  = 0 is mℓ = 0.  With only one electron, the value of ML will be the 
same  as mℓ (= 0) and the minimum L value required for this ML is also 0. 

Spin is treated in a similar manner, but the numbers are usually  different.  With only one 
electron, s can only be 1/2 .  This means that ms may be either + 1/2 or – 1/2.  The value of MS will 
then be either ± 1/2 , and the minimum value of S required to produce this MS value is 1/2 .

In summary, for the ground state of hydrogen, we have L = 0 and S = 1/2.
The ground state of helium is slightly more complicated because there are now two electrons.  

From the electron configuration (1s2) we again have n = 1, and each s electron has  = 0.  The 
only value of mℓ available for  = 0 is mℓ = 0, and this is true for both electrons.  The resulting 
value of ML will again be 0, and the minimum L value required for this ML is also 0. 

Spin is quite different this time.  For each electron, s can only be 1/2 , and once again ms may 
be either + 1/2 or – 1/2 .  But because these two electrons already have the same values for n (= 1), 
 (= 0), and mℓ (= 0), they cannot have the same value of ms (by the Pauli exclusion principle).  
As there are only two different values for ms , and there are two electrons, clearly  one must have 
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spin up (ms = + 1/2) and the other must have spin down (ms = – 1/2).  The makes MS = 0, and the 
minimum value of S required to produce this MS value is 0.  (Note that  if the two electrons had 
the same spin, then S = 1 would be possible, but this situation is prohibited by the Pauli 
exclusion principle.)

Therefore, for the ground state of helium, we have L = 0 and S = 0, a result slightly  different 
from that for hydrogen.

We are now in a position to provide a designation for the electron configuration that will 
indicate the manner in which these electrons combine to produce orbital angular momentum and 
spin angular momentum.  This designation, which is based on the values of L and S, is called a 
term.  It has the general form 2S+1L, where L is a letter (S, P, D, F, G, H, ...) corresponding to the 
numerical value of L (0, 1, 2, 3, 4, 5, ...), and the quantity 2S+1 is the multiplicity.

For the ground state of hydrogen, the multiplicity  is 2(1/2) + 1 = 2, making the term 
designation 2S (pronounced doublet S).  For the ground state of helium, the multiplicity is 2(0) + 
1, and the term designation is 1S (singlet S).  (Note:  The S in 2S and 1S has nothing to do with 
spin.  The spin information is included in the multiplicity, where we will find triplets, quartets, 
quintets, sextets, etc. in addition to singlets and doublets.)

Equivalent and Non-equivalent Electrons
The above treatment for helium considered its two electrons to be equivalent, meaning they 

share the same values for n and .  Non-equivalent electrons – those that differ in either n or  – 
must be handled differently.  An example can be found in the excited state of helium.  Suppose 
that one of the two electrons is excited to the second level (n = 2), giving an electron 
configuration of He 1s1 2s1.  What term applies to this configuration?

Such problems are most easily  solved by constructing a table showing the possible values of 
mℓ and ms , along with the resulting values of ML and MS , the required values of L and S, and the 
terms that these values combine to produce.  Table 3.7 shows a solution to the current problem.

Table 3.7:  Terms for two non-equivalent s electrons
electron: 1s 2s
state mℓ ms mℓ ms ML MS group

1 0 + 1/2 0 + 1/2 0 +1 #1
2 0 + 1/2 0 – 1/2 0 0 #1
3 0 – 1/2 0 – 1/2 0 –1 #1
4 0 – 1/2 0 + 1/2 0 0 #2

Because each electron is an s electron, the only possible value of mℓ is 0, making ML = 0 for 
each combination.  Because the electrons are non-equivalent, all four possible combinations of 
spins are allowed, giving four different states.  (A state  is a combination in which all four 
quantum numbers are specified:  n, , mℓ , ms .  The states are numbered in the first column of this 
table, but this is only for reference.)  These states produce the different values for MS shown.
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We now determine what values of L and S are implied by these values for ML and MS .  We 
begin by noting the largest value of MS (= 1).  This will require a minimum value of S = 1, 
resulting in a multiplicity of 2(1) + 1 = 3 , indicating a triplet term.  To find the corresponding 
value of L, we locate the largest value of ML in a state with MS = +1; as there is only one such 
state in this simple example, this is an easy task:  ML = 0.  The minimum value of L needed to 
produce a state with ML = 0 is 0, giving us a 3S term.

Each term may be composed of multiple states.  In this case, the 3S term contains three states, 
each with the same value of ML (0) and a different value of MS (–1, 0, +1).  These states are 
identified in Table 3.7 as group #1, consisting of states 1, 2, and 3, but we could just as well have 
made our 3S term using states 1, 3, and 4.  It really  does not matter as states 2 and 4 have the 
same values for ML and MS, and that is all that concerns us.  Our first result then is that two non-
equivalent electrons produce a 3S term.

But there is more.  We accounted for three of the four states with our 3S term, but there is one 
state left  over.  It  has ML = 0, which leads to another S term, and it has MS = 0, which gives a 
multiplicity of 2(0) + 1 = 1, resulting in a 1S term.  Such a term consists of only  one state (that is 
what singlet means), one with ML = 0 and MS = 0, which is just what we have in state 4.  Thus we 
identify group #2 as the state(s) required for a 1S term.

While the only term for two equivalent s electrons (designated s2) is 1S, the terms for two 
non-equivalent s electrons (designated ss) are 1S and 3S.  This result  is typical; equivalent 
electrons (s2, p4, d3, etc.) will always produce fewer terms than their corresponding non-
equivalent electrons (ss, pppp, ddd, etc.).  Also note that there are non-equivalent electron 
combinations (such as sp, sd, spd, etc.) that have no equivalent counterparts.

We will now consider a more complex example:  pp (two non-equivalent p electrons).  For 
each electron,  = 1, giving mℓ = 0, ±1; and s = 1/2 , giving ms = ± 1/2 – signified by ↑ (spin up) or 
↓ (spin down).  We consider all possible combinations in Table 3.8, as we are not limited by the 
Pauli exclusion principle; this yields 36 states.  (Note:  The order in which the states are listed 
does not matter, but it  can make the bookkeeping easier.)  As before, we calculate ML and MS and 
then assign states to terms.

We begin by finding the highest ML , which is 2.  This requires a term with L = 2, which 
would be a D term.  The highest MS that goes with ML = 2 is MS = 1, giving a multiplicity  of 2(1) 
+ 1 = 3.  This means we need a 3D term, which will consist of 3×5 = 15  states:  5 for the 5 
different ML values (0, ±1, ±2) available for L = 2, and 3 for the 3 different MS values (0, ±1) 
available for S =1.  (In general, this product is (2L+1)(2S+1), and it is equal to the statistical 
weight of the term.)  A suitable set of 15 states is identified as group #1.

Next we find the highest ML of the remaining states; this is again 2, which will give us 
another D term.  The highest MS with ML = 2 is MS = 0, which means we will have S = 0 and a 
multiplicity of 1, leading to a 1D term.  Such a term requires 1×5 = 5 states; a suitable set is 
group #2.
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Table 3.8:  Terms for two non-equivalent p electrons (pp)
  mℓ1   mℓ2

 +1 0 –1 +1 0 –1 ML MS group
 ↑   ↑   2 1 #1
 ↑   ↓   2 0 #1
 ↓   ↓   2 –1 #1
 ↓   ↑   2 0   #2
 ↑    ↑  1 1 #1
 ↑    ↓  1 0 #1
 ↓    ↓  1 –1 #1
 ↓    ↑  1 0   #2
 ↑     ↑ 0 1 #1
 ↑     ↓ 0 0 #1
 ↓     ↓ 0 –1 #1
 ↓     ↑ 0 0   #2
  ↑  ↑   1 1     #3
  ↑  ↓   1 0     #3
  ↓  ↓   1 –1     #3
  ↓  ↑   1 0       #4
  ↑   ↑  0 1     #3
  ↑   ↓  0 0     #3
  ↓   ↓  0 –1     #3
  ↓   ↑  0 0       #4
  ↑    ↑ –1 1 #1
  ↑    ↓ –1 0 #1
  ↓    ↓ –1 –1 #1
  ↓    ↑ –1 0   #2
   ↑ ↑   0 1         #5
   ↑ ↓   0 0         #5
   ↓ ↓   0 –1         #5
   ↓ ↑   0 0           #6
   ↑  ↑  –1 1     #3
   ↑  ↓  –1 0     #3
   ↓  ↓  –1 –1     #3
   ↓  ↑  –1 0       #4
   ↑   ↑ –2 1 #1
   ↑   ↓ –2 0 #1
   ↓   ↓ –2 –1 #1
   ↓   ↑ –2 0   #2
Of the remaining states, the highest ML is 1, with a maximum MS of 1, giving a 3P term.  Its 

3×3 = 9 states are labeled as group #3.
Of the remaining states, the highest ML is 1, with a maximum MS of 0, giving a 1P term.  Its 

1×3 = 3 states are labeled as group #4.
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Of the remaining states, the highest  ML is 0, with a maximum MS of 1, giving a 3S term.  Its 
3×1 = 3 states are labeled as group #5.

The only remaining state has ML = 0 and MS = 0, giving a 1S term.  This 1×1 = 1 last state is 
labeled as group #6.

So the terms for pp electrons are 3D, 1D, 3P, 1P, 3S, and 1S.
For comparison, we will now determine the terms for p2 electrons; here we must obey the 

Pauli exclusion principle and only allow states in which the two electrons have different mℓ or 
different ms .  Table 3.9 lists the 15 allowed states.

Table 3.9:  Terms for two equivalent  p electrons (p2)
  mℓ 

 +1 0 –1 ML MS group

 ↑ ↓   2 0 #1
 ↑ ↑  1 1    #2
 ↑ ↓  1 0 #1
 ↑  ↑ 0 1    #2
 ↑  ↓ 0 0 #1
 ↓ ↑  1 0    #2
 ↓ ↓  1 –1    #2
 ↓  ↑ 0 0    #2
 ↓  ↓ 0 –1    #2
  ↑ ↓  0 0       #3
  ↑ ↑ –1 1    #2
  ↑ ↓ –1 0 #1
  ↓ ↑ –1 0    #2
  ↓ ↓ –1 –1    #2
   ↑ ↓ –2 0 #1
The analysis proceeds as before.  Of all the states, the highest ML is 2, with a maximum MS of 

0, giving a 1D term.  Its 1×5 = 5 states are labeled as group #1.
Of the remaining states, the highest ML is 1, with a maximum MS of 1, giving a 3P term.  Its 

3×3 = 9 states are labeled as group #2.
The only remaining state has ML = 0 and MS = 0, giving a 1S term.  This 1×1 = 1 last state is 

labeled as group #3.
So the terms for p2 electrons are  1D, 3P, and 1S.
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As a general rule,  singlet terms include MS = 0 

 doublet terms include MS = + 1/2 , – 1/2

 triplet terms include MS = +1, 0, –1

 quartet terms include MS = + 3/2, + 1/2 , – 1/2 , – 3/2  etc.

 an S term includes ML = 0

 a P term includes ML = +1, 0, –1

 a D term includes ML = +2, +1, 0, –1, –2  etc.

When faced with a set of terms resulting from a particular electron configuration, we often 
want to know which of them produces the lowest energy.  For terms given by equivalent 
electrons, Hund's rule applies:  The terms with greatest multiplicity will have the lowest energy, 
and of those, the terms with the greatest L will have the lowest energy.  This says that for the 
example of p2 electrons given above, the 3P term will have the lowest energy.

There is more to the story.  Recall that   

� 

 
J =
 
L +
 
S .  The vectors   

� 

 
L  and   

� 

 
S  will add such that the 

vector   

� 

 
J  has integer length (if S is an integer) or half-integer length (if S is half-integer).  In 

general, J has the following values:

Eq. 3.70   

� 

J = (L + S),(L + S −1),(L + S − 2),… L − S   for  J ≥ 0

For L = 0 and S = 1/2,  J = 1/2 2S + 1 = 2

For L = 1 and S = 1/2,  J = 3/2 , 1/2 2S + 1 = 2

For L = 3 and S = 3/2,  J = 9/2 , 7/2 , 5/2 , 3/2 2S + 1 = 4

For L = 2 and S = 1,  J = 3, 2, 1 2S + 1 = 3
Note:  While L and S specify a term (2S+1L), L, S, and J specify a level (2S+1LJ).

For ground state hydrogen, we had an electron configuration of 1s1, which produced a 2S 
term, for which L = 0 and S = 1/2.  Adding vectors with these lengths can only  produce a   

� 

 
J  

vector of length J = 1/2, resulting in a level designation of 2S1/2 .  (Note:  This is still called a 
doublet even though only  one J value occurs.  The number of J values is 2S+1 if L >S and 2L+1 
if L < S.)

For ground state helium, we had an electron configuration of 1s2, which produced a 1S term, 
for which L = 0 and S = 0.  Adding vectors with these lengths can only  produce a   

� 

 
J  vector of 

length J = 0, resulting in a level designation of 1S0.  

All closed (filled) shells have 1S0 ground states, for which L = 0 and S = 0.  For example, 
consider neon (Z = 10), which has a ground state configuration of  1s2 2s2 2p6.  Table 3.10 lists 
all possible states – there is only  one – for the two 1s electrons, the two 2s electrons, and the six 
2p electrons.  Because the shell is filled, each spin-up electron is paired with a spin-down 
electron, insuring that MS = 0.  Similarly, for every  electron with mℓ = +1, there is another with 
mℓ = –1, insuring that ML = 0.
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Table 3.10:  Ground state for neon (Z = 10)
 1s 2s  2p
        mℓ : 0 0 +1 0 –1 ML MS term level

 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 0 0 1S 1S0

As another example, consider a 3P term, for which L = 1 and S = 1.  In this case, J can take 
on three different integer values (2, 1, 0), as shown in Figure 3.6.  This leads to the three different 
levels that make up the triplet:  3P2 , 3P1 , and 3P0 .  

Figure 3.6:  Determination of J values for a 3P term
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Which energy level J is the lowest?  The rule is simple:  If the shell is less than half filled, the 
lowest J level will have the lowest energy; if the shell is more than half filled, then the highest J 
level will have the lowest energy.  As examples, consider the ground states of carbon and oxygen, 
as shown in Figure 3.7.

Figure 3.7:  Ground states for carbon (regular) and oxygen (inverted)
Carbon (Z = 6):  1s2 2s2 2p2 ⇒ 3P0                Oxygen (Z = 8):  1s2 2s2 2p4 ⇒ 3P2
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The fourth quantum number was called the magnetic quantum number.  This is because the 
application of an external magnetic field will split  each J level into states with different MJ , 
where MJ = J, J –1, J –2, ... –J, and the statistical weight of a J level is then gJ = 2J +1.

Where does all of this lead?  How does it involve absorption and emission?
Absorption and emission involve electron transitions between different energy  states within 

the atom.  A reasonably precise vocabulary has been developed to insure that we can say  what we 
mean as we discuss these processes:
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• A state is totally  specified by four quantum numbers, either [L, S, J, MJ]  or [L, S, ML , 
MS] .  An example of a state is 2P3/2  MJ = –1/2.

• A level specifies only  the quantum numbers [L, S, J] and thus may include several states.  
An example of a level is 2P3/2 .

• A term specifies only  the quantum numbers [L, S] and thus may  include several levels.  An 
example of a term is 2P.

• Transitions between states are called components.
• Transitions between levels are called lines.
• Transitions between terms are called multiplets.
Charlotte Moore's A Multiplet Table of Astrophysical Interest (1972) lists transitions for each 

element and ionization stage, grouped by multiplet.  For example, consider the second multiplet 
for neutral magnesium.

Mg I multiplet #2 is given as 3 3P° → 4 3S (the number preceding each term indicates the 
value of n).  The three lines that make up this multiplet are as follows:

 transition wavelength
 3 3P2° → 4 3S1 5183.6042

 3 3P1° → 4 3S1 5172.6843

 3 3P0° → 4 3S1 5167.3216

Each of these transitions has the same upper level (4 3S1), but the lower levels are different.  
As this is a regular multiplet, the lower level with the lowest energy is found in the third 
transition (3 3P0°), which has the shortest wavelength and therefore the largest energy  jump to 
the upper level.

Application of a magnetic field would split these lines into components.
Note that there is an extra designation for each of the lower levels in this multiplet; this is for 

parity, which may be either odd (3P°) or even (3P).  Parity  refers to the symmetry of the wave 
function with respect to the origin.  Parity  is said to be even if Ψ(–x) = Ψ(x), and parity is odd if 
Ψ(–x) = Ψ(–x).  

For one electron, the parity P (not to be confused with the L = 1 term) is given by P ≈ (–1)ℓ; 
for even values of  (even parity), P ≈ +1, while for odd values of  (odd parity), P ≈ –1.  For 
example, s and d electrons have even parity while p and f electrons have odd parity.

For a multi-electron atom, the parity is given by P ≈ (–1)Σℓ, where the exponent is the 
algebraic sum of the individual  values.  The parity  of a term depends on the configuration from 
which it arises, rather than on the term itself.  A 3P term may be either odd or even:  an sp 
configuration (odd) can produce a 3P° term while a pp configuration (even) can produce 3P.

Even configurations include  s, d, ss, sd, pp, ssd, etc.
Odd configurations include  p, sp, pd, ppp, spd, etc.
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Radiative Transitions
We now have notation for identifying different terms and levels, and we are ready to examine 

transitions of the electron from one level to another, as will occur during absorption and 
emission.  Although there are numerous energy levels within most atoms, the electronic 
transitions that can occur are not unrestricted.  Quantum mechanics provides us with selection 
rules, which govern the changes in the quantum numbers that can occur during a radiative 
transition.  There are different types of transitions, and each type has a different set of selection 
rules.  The most common type of transition is the electric dipole transition; other, less common, 
types include magnetic dipole transitions and electric quadrupole transitions.  Figure 3.8 shows 
the differences in the various charge configurations.

Figure 3.8:  Multipole configurations
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Radiation is produced by oscillations of the different charge configurations.  Monopoles do 
not oscillate, but oscillation of the charges in the electric dipole (as shown in Figure 3.9) will 
produce an oscillation in the direction and strength of the electric field vector surrounding the 
dipole, which will generate sinusoidal electromagnetic waves that propagate outwards from the 
dipole.

Similarly, magnetic dipole and electric quadrupole oscillations can also generate 
electromagnetic waves, but the details are different from (and more complex than) those for the 
electric dipole.

Figure 3.9:  An oscillating electric dipole and its changing electric field
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Selection rules arise from quantum mechanics.  Recall that the probability of the electron 
existing is given by    

� 

Ψ*∫ Ψd r , where Ψ is the wave function, and   

� 

d r  signifies integration over 

Pierce:  Notes on Stellar Astrophysics Chapter 3:  Atomic Structure

72



all space.  Electrons in different energy levels have different wave functions; the probability of 
an electron making a transition from an initial state Ψi to a final state Ψf is given by 

  

� 

Ψ f
*∫
 
d Ψi d r , where the operator   

� 

 
d  depends on the type of transition.  If the value of this 

integral is zero, then the transition cannot  proceed by the method associated with the given 
operator.  We will not attempt to derive selection rules here, but will simply  present the results 
for electric dipole transitions.

Electric dipole selection rules:
1 ΔJ = 0, ±1 but J = 0 cannot combine with J = 0
2 ΔM = 0, ±1
3 Parity change
4 Δℓ = ±1 (one electron jumps)
and for strict LS coupling,
5 ΔS = 0 (multiplicity is constant)
6 ΔL = 0, ±1 but L = 0 cannot combine with L = 0

"Allowed transitions" follow these selection rules.  Transitions that violate rules 1 through 4 
are called "forbidden transitions".  This does not mean that they  cannot happen, but rather that 
they  occur less frequently, by  other mechanisms – usually either magnetic dipole or electric 
quadrupole transitions.  We will find later that the probabilities for magnetic dipole or electric 
quadrupole transitions are orders of magnitude lower than for electric dipole transitions.

To illustrate the electric dipole selection rules, consider which levels can combine with 2P3/2 , 
for which S = 1/2 , L = 1, and J = 3/2 .

By rule #5, all terms will be doublets, and by  rule #6 they must have L = 0, 1, or 2.  As the 
given term has even parity, only odd parity  terms will be able to combine with it.  This means we 
need consider only 2P°, 2S°, and 2D° terms.

By rule #1, J must be 1/2 , 3/2 , or 5/2 .  We now apply  these to the above terms to determine the 
allowable levels.

For 2S°, L = 0 and S = 1/2 .  There is only  one way to combine these, and the resulting J value 
is 1/2.  Therefore, the only level for this term is 2S°1/2 .

For 2P°, L = 1 and S = 1/2 .  Now L and S may add to make 3/2 or subtract to make 1/2 .  This 
produces two levels for the 2P° term:  2P°3/2 and 2P°1/2 .

For 2D°, L = 2 and S = 1/2 .  L and S may add to make 5/2 or subtract to make 3/2 .  This 
produces two levels for the 2D° term:  2D°5/2 and 2D°3/2 .

A useful way of diagraming the transitions for a given element is the Grotrian diagram – a 
plot of energy vs. term.  Information that may be included on such a diagram includes electron 
configurations, terms, energy  levels, transition wavelengths, multiplet numbers, etc.  Examples 
of Grotrian diagrams can be found in Lang's Handbook (1980) and in Herzberg (1944).

Ionized calcium's single electron results in a fairly simple diagram (Figure 3.10).  In the 
ground state, the first three shells are completely filled, with only a single electron in the fourth 
shell (4s); the terms it  forms are all doublets.  Absorption transitions can excite this outer 
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electron to higher energy levels, but the transitions must obey the appropriate selection rules – 
normally those for electric dipole transitions.  The ground state does not connect directly to the 
5s or 6s levels, nor to those with d or f configurations, due to selection rule #6.  The one apparent 
exception to this rule – and also to rule #3 – is the 4s–3d transition, which is a forbidden 
transition – indicated by a dashed line.

Figure 3.10:  Grotrian diagram for Ca II
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With two electrons in its outer shell, neutral calcium presents a considerably  more 
complicated diagram (Figure 3.11).  The first point to note is that Ca I forms singlets and triplets, 
which are segregated on the diagram.  Normally, the transitions obey  this segregation of terms as 
prescribed by selection rule #5, but there are a few exceptions – indicated by dashed lines.  

The ground state configuration is 4s2, meaning both electrons are s electrons.  This level 
connects to levels marked 4p, for which the configuration is 4s4p.  These levels in turn connect 
to 5s (4s5s),  4d (4s4d), 5d (4s5d),  and  4p2 (4p2) – for which both s electrons have been excited.  
The 3d levels do not connect  to the ground state because changing one electron from d to s 
would violate selection rule #6.

The levels marked 4p1 each connect to a 3d level, implying that  the configuration for these is 
3d4p – different from the 4p levels (4s4p).

The terms along the horizontal axis normally alternate in parity.  This makes the diagram 
neater because parity must change for electric dipole transitions with strict LS coupling.  

Numbers on a few of the transitions indicate the principal wavelengths of a multiplet.  
Different J levels are not distinguished on the diagram, so each transition represents a multiplet.
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Figure 3.11:  Grotrian diagram for Ca I
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In summary, we have reasonable models of simple atoms and a means for understanding the 
electronic structure of multi-electron atoms, along with terminology for describing electronic 
transitions.  The next task is to determine just how the electrons will be distributed within the 
atom under any given conditions.  We know the possible places they might be, but we do not yet 
know where they are.  This will be the subject of the next chapter.
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CHAPTER 4:  Thermodynamic Equilibrium
In this chapter, we will try  to determine how electrons distribute themselves within the atom.  

We know what configurations are possible for the electrons to attain, but we have not discussed 
which ones they are most likely to attain.  We can imagine that the electron configurations of 
individual atoms will somehow be related to the energy of the gas as a whole, and this energy 
can be characterized by the average kinetic energy  of a particle of the gas.  The parameter we use 
to measure this average kinetic energy is the temperature, or more precisely, the kinetic 
temperature of the gas.  The relation is relatively simple:

Eq. 4.1  KE = 1
2 mv

2( ) = 3
2 kT   ergs/particle     (k is Boltzmann's constant*)

We can then link this temperature to the distribution of electrons within the atom, but only 
under certain conditions.  Because electronic transitions occur so rapidly, the atoms are 
constantly changing their configurations.  However, given sufficient time, the atoms will reach a 
state in which no net transitions occur.  This state will be called thermodynamic equilibrium, 
and it will be characterized by the temperature of the gas.  The standard assumption is that 
without any external input of energy or work, a system will move toward a state of 
thermodynamic equilibrium.

There are several different  processes by  which a gas may change its state, and we may 
establish equilibrium distribution functions that will describe how the particles of a gas in 
equilibrium at some temperature T will arrange themselves.  The first of these processes is 
excitation.

Excitation
We have already mentioned the ground state, which is the configuration of electrons in the 

atom that has the lowest possible energy.  Excitation refers to the population of higher electronic 
energy levels in the atom; excited states of an atom have greater energy than the ground state.  
Generally there are many excited states in an atom, but only one ground state.  Obviously, in 
order for an atom to make a transition from the ground state to an excited state, it will have to 
obtain additional energy from somewhere.  The most common sources of such energy  are 
collisions. 
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Consider a gas of atoms at some kinetic temperature; this means that the atoms are moving, 
with an average kinetic energy  determined by the temperature.  As the atoms move in random 
directions, they collide with each other, exchanging energy in the process.  The energy exchange 
may simply amount to a change in the speeds of the colliding particles, as is seen in the 
collisions of billiard balls.  But the atom may also use some of the energy gained in a collision to 
excite its electrons to higher energy states, effectively storing some of this newly acquired 
energy.  However, most gases are dense enough and their particle speeds are high enough that 
collisions are quite frequent; collisional energy stored an the excitation process may be swiftly 
lost in the next collision.  Thus atoms are constantly being collisionally  excited and de-excited, 
meaning that at any given time, the atoms in a gas will be distributed between the ground state 
and the various excited states.  

The higher the temperature of the gas, the faster the particles will be moving; collisions that 
occur will be more frequent and more violent, and capable of exciting electrons to very high 
energy levels.  We would then expect  a hot gas to maintain a greater fraction of its atoms in 
excited states, with a greater fraction of those excited states requiring high energies to attain.  
Conversely, in a cool gas the collisional energies will be lower and less apt to result in excitation, 
leading to a greater fraction of the atoms being found in the ground state.  We need a way to 
quantitatively describe the distribution of atoms among the various energy states at a given 
temperature.

Boltzmann Equation
For simplicity, consider a gas of hydrogen atoms.  Let Nn be the number of atoms per cubic 

centimeter (the number density) with the electron in level n, and let  Nm be the number density 
of atoms with the electron in level m.  Let gn and gm be the statistical weights of levels n and m, 
and let En and Em be the respective energies of these levels.  Then the relative populations of 
these two groups of atoms are given by the Boltzmann equation:

Eq. 4.2   

� 

Nn

Nm

= gn
gm

e−En kT

e−Em kT = gn
gm

e−(En −Em ) kT

(Note that n and m need not be restricted to values of the principal quantum number; they 
may represent any two energy states.)

We are often interested in relating a particular excited state to the ground state.  In this case, 
we will let  m represent the ground state, and denote it by setting m equal to 0.  (It is customary  to 
denote the ground state with 0, letting g0 be the statistical weight of the ground state, etc.  
However, the ground state of the hydrogen atom is n = 1; hence, we may regard g1 as g0  and N1 

as N0 .)  The Boltzmann equation relating the excited state n to the ground state is then as 
follows:

Eq. 4.3  

� 

Nn

No

= gn
go
e−(En −Eo ) kT = gn

go
e−ΔEn kT
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The Boltzmann Hotel
We may provide an analogy  for the Boltzmann equation in the form of the Boltzmann Hotel.  

First, let us write the essence of the Boltzmann equation:  Nn ≈ gn e
–En/kT.

Our Boltzmann Hotel is a high-rise structure with a number of floors; suppose we are 
considering obtaining a room on the nth floor.

We would like to know the number of occupants of the nth floor (Nn).  This will of course 
depend on the number of rooms on the nth floor, multiplied by  the number of persons each room 
is allowed to hold, which will give us the maximum capacity  of the nth floor (gn).  In general, the 
greater the capacity of a floor, the more occupants it is likely to have when the hotel is full, or 
nearly so.

However, it may be that  the hotel is not full, that the floors are not necessarily near capacity.  
New guests at the hotel may choose to stay on any of the floors.  Of course, room prices are not 
all equal; in general, rooms that are higher up are more expensive, due to the better view.  The 
price of a room on the nth floor is represented by En .

What else determines how guests will distribute themselves among the different floors?  It 
would seem that money (T) would be a factor.  If guests have little money, they will have to stay 
on one of the lower floors, but if they  have plenty, they can stay wherever they  want.  Even 
better, let T represent the current  state of the economy.  If the economy is strong, there is plenty 
of money to be had, and at least some hotel guests will populate the upper levels of the hotels 
they  visit.  But if the economy is weak, then what guests the hotels do have will be staying near 
the ground floor because they cannot afford the higher rooms.

Partition Function
The Boltzmann equation relates two states to each other, but what we would really like to 

know is how a particular state relates to the total number density of atoms.  We can obtain this 
total (N) by summing over all of the energy states n:

Eq. 4.4  

� 

N = Nn
n
∑ = No

go
gne

−ΔEn kT

n
∑

The sum in this equation is known as the partition function U(T):

Eq. 4.5  

� 

U(T ) = gne
−ΔEn kT

n
∑

The partition function is not easily  obtained, as it involves a sum over all the energy levels in 
the atom, requiring knowledge of their energies and statistical weights.  In fact, the sum diverges 
for finite values of T.  However, as atoms are not infinitely large, we can usually truncate the 
sum after a reasonable number of terms (electrons are usually found relatively  close to the 
nucleus).

Just as the statistical weight of a level gives the number of different combinations of quantum 
numbers that place an electron in that level, the partition function is essentially  a statistical 
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weight for the whole atom, giving the number of different  ways the atom can exist at a given 
temperature.  It includes the ground state and all the excited states, weighted by Boltzmann 
equations.  

We can now write an expression for the fraction of all hydrogen atoms that have their 
electrons in level n:

Eq. 4.6  

� 

Nn

N
= gn
U(T )

e−ΔEn /kT

Historical note:  In the days before pocket calculators, astronomers relied primarily on 
common logs rather than natural logs.  And of course in calculations involving atoms, energies 
are usually given in electron volts.  This combination made it useful to define a new variable as 
follows:

 

� 

θ ≡1.602×10−12 ergs
eV

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
log10 e
kT

≈ 5040
T

    

With this substitution, the exponential in Equation 4.6 is changed:  e–ΔEn/kT  ⇒ 10–θΔEn, where 
E is in electron volts.  This substitution is not essential now, but much of the literature still uses θ 
as a temperature variable.  (Note:  This θ has nothing to do with angles.)

As an example, we can calculate the partition function for a simple atom:  Ca II (singly 
ionized calcium).  We will need the energies and statistical weights of the different levels 
(identified by  their configurations and terms), which can be obtained from Moore (1972) and 
from Grotrian diagrams from Lang (1980) (see Figure 3.10).  (Recall from Chapter 3 that the 
statistical weight of a term is the product (2S+1)(2L+1)).  Results are shown in Table 4.1.

Table 4.1:  Terms, energies, and statistical weights for Calcium II

                                    f (T) = g e–E/kT                                  
Term E (eV) g f(2000) f(3000) f(4000) f(5000) f(6000)
4s 2S 0 2 2 2 2 2 2
3d 2D 1.69 10 5.51e–4 1.45e–2 7.42e–2 1.98e–1 3.81e–1
4p 2P° 3.11 6 8.74e–8 3.58e–5 7.24e–4 4.40e–3 1.47e–2
5s 2S 6.44 2 1.18e–16 3.04e–11 1.54e–8 6.45e–7 7.79e–6
4d 2D 7.02 10 2.04e–17 1.61e–11 1.43e–8 8.40e–7 1.27e–5
5p 2P° 7.48 6 8.50e–19 1.63e–12 2.26e–9 1.73e–7 3.13e–6
4f 2F° 8.4 14 9.53e–21 1.08e–13 3.65e–10 4.78e–8 1.23e–6
6s 2S 8.73 2 2.01e–22 4.32e–15 2.00e–11 3.17e–9 9.29e–8
5d 2D 8.98 10 2.35e–22 8.21e–15 4.85e–11 8.88e–9 2.87e–7
6p 2P° 9.20 6 3.94e–23 2.10e–15 1.54e–11 3.20e–9 1.12e–7
5f 2F° 9.63 14 7.58e–24 9.30e–16 1.03e–11 2.75e–9 1.14e–7

Adding each column of f (T) values yields the partition function for each temperature:

Pierce:  Notes on Stellar Astrophysics Chapter 4:  Thermodynamic Equilibrium

79



Table 4.2:  The partition function (U(T)) and the fraction of atoms in the ground state (No /N)

T: 2000 3000 4000 5000 6000 7000 8000
U(T): 2.00055 2.01452 2.07497 2.20235 2.39527 2.64187 2.92838
No /N: 0.9997 0.9928 0.9639 0.9081 0.8350 0.7570 0.6830
It is immediately obvious that the partition function is dominated by the ground state at 

relatively low stellar temperatures – that is, U(T) ≈ g0 .  As the temperature goes up, the fraction 
of excited atoms increases as the partition function expands.  In the atmospheres of cool stars, we 
could safely approximate U(T) by g0 , but this approximation becomes less reliable at higher 
temperatures.

Of course, this is based on data for only  one species – Ca II.  While other atoms will exhibit 
similar behavior, the details will depend on the energies of the different levels – specifically how 
close to the ground state the excited states lie.  Atoms with a large energy jump to the first 
excited state are more apt to be found in the ground state, even at relatively high temperatures.  
Atoms with low-lying excited states will be excited comparatively easily.

It should be remembered that the Boltzmann equation only predicts relative level populations 
for gases in equilibrium; however, this condition is usually – but not  always – met in the 
atmospheres of stars.

Radiative Transition Probabilities
The Boltzmann equation describes the distribution of electrons over the various energy levels 

for a collection of atoms in thermodynamic equilibrium, but it says nothing about how the atoms 
arrive at that distribution.  As already noted, they  may  achieve this distribution by the process of 
collision, and if the gas is sufficiently dense, the collision process will be very efficient.  
However, atoms may  also undergo electronic transitions by absorbing or emitting suitable 
photons, and this brings up the question of the probability of radiative transitions.

We may divide radiative transitions into two groups:
• Spontaneous transitions, which occur without any external stimulus; and
• Induced transitions, which result from an interaction with the photon field.
Consider a two-level atom, as shown in Figure 4.1.  The lower level (1) has energy E, 

statistical weight g1 , and population N1 (atoms per cc), while the upper level (2) has energy  E 
+hν, statistical weight g2 , and population N2 .

Figure 4.1:  The two-level atom

2

1 N1        g1         E

N2        g2        E + h! 

Let P21 be the probability per second of a transition from level 2 to level 1, and let P12 be the 
probability per second of a transition from level 1 to level 2.

There is only one spontaneous transition to consider:  an atom with its electron in level 2 may 
spontaneously  emit a photon while making a transition to level 1.  We may define a coefficient 
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A21 to be the probability  per second for spontaneous emission, giving us P21 = A21 .  A21 is 
known as the Einstein A-coefficient.

Absorption is obviously an induced process, as it requires the presence of photons having 
energy hν in order for the transition to proceed.  Because photons are necessary, we expect the 
probability  of an absorption transition to be proportional to the intensity at the specified 
frequency (Iν); this gives us P12 = B12 Iν , where B12 is the Einstein B-coefficient.

There is a third type of transition to consider.  While absorption cannot  occur without 
photons, it  is possible for photons to stimulate the emission of additional photons of the same 
frequency, in the same direction, and in phase with the original photons; this is known as 
stimulated emission.  Because this process is induced by the photon field, its probability will 
have the same dependence on the intensity as absorption did.  We will write P21 = B21 Iν , where 
B21 is another Einstein B-coefficient.  (Note:  It is also common to formulate this discussion 
using the energy density uν instead of Iν .)

The number of transitions per second per cubic centimeter is found by  multiplying each 
transition probability by the appropriate level population:

•  N1 B12 Iν  (for absorption)

•  N2 A21      (for spontaneous emission)

•  N2 B21 Iν  (for stimulated emission)

Now for thermodynamic equilibrium, there will be a relation between the atoms and the 
radiation field.  Thermodynamic equilibrium requires that there be no net change in the 
population of either level, meaning that  the number of upward transitions must be equal to the 
number of downward transitions.  As the atomic transition rates given above involve the intensity 
of the radiation, there is an definite connection between the radiation and the atoms, and we 
should be able to use this connection to deduce some properties of the photon field.

We begin by again stating the the number of upward transitions should equal the number of 
downward transitions, which provides our starting equation:

Eq. 4.7  N1 B12 Iν = N2 A21 + N2 B21 Iν
This can be solved for the intensity:

Eq. 4.8  

� 

Iν = A21 B21
N1
N2

B12
B21

−1

In thermodynamic equilibrium, the ratio of level populations is given by the Boltzmann 
equation:

Eq. 4.9  

� 

N1
N2

= g1
g2
e− E1−E2( )/kT

Note that as the temperature approaches infinity, the exponent diminishes to zero and the 
ratio of the level populations approaches the ratio of the statistical weights:
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As 

� 

T →∞, N1
N2

→ g1
g2

.

So we may  interpret the ratio of statistical weights as the relative level population at infinite 
temperature.

We constructed our two-level atom such that its energy levels differ by the photon energy hν.  
Therefore, E2 – E1 = hν, and the Boltzmann equation is simplified:

Eq. 4.10 

� 

N1
N2

= g1
g2
ehν /kT

Substituting this expression into Equation 4.8 gives the following:

Eq. 4.11 

� 

Iν = A21 B21
g1
g2
B12
B21

ehν /kT −1

For low frequencies (hν/kT <<1), the intensity of the radiation field is observed to follow the 
Rayleigh-Jeans law:

Eq. 4.12 

� 

Iν = 2kT
c2

ν 2

In order to get Equation 4.11 into this form, we must use the series expansion for the 
exponential:

Eq. 4.13 
 
ex ≈ 1+ x + x

2

2!
+ x

3

3!
+…⇒ e

hν
kT ≈ 1+ hν

kT
+

hν
kT( )2
2!

+
hν
kT( )3
3!

+…  

Retaining only the first two terms of the expansion, substituting into Equation 4.11, and 
inserting the result into Equation 4.12 gives the following:

Eq. 4.14 

� 

Iν = A21 B21
g1
g2
B12
B21

1+ hν
kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −1

    and

Eq. 4.15 

� 

2kT
c2

ν 2 = A21 B21
g1
g2
B12
B21

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

g1
g2
B12
B21

hν
kT

Now in order for the right side of Equation 4.15 to be a second-order polynomial in ν, we 
must have the quantity in parentheses equal to zero:  

Eq. 4.16 g1 B12 = g2 B21

With this requirement, we can find a relation between Einstein's A- and B-coefficients:

Eq. 4.17 

� 

A21
B21

= 2kT
c2

ν 2 hν
kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =
2hν 3

c2

Pierce:  Notes on Stellar Astrophysics Chapter 4:  Thermodynamic Equilibrium

82



Substituting the coefficient relations Equations 4.16 and 4.17 into Equation 4.11 yields the 
form of the intensity, good for all frequencies:

Eq. 4.18 

� 

Iν = 2hν
3

c2
1

ehν /kT −1
= Bν (T )

Thus, our analysis of atomic transition probabilities produces the correct form of the Planck 
function!  The three Einstein coefficients are related by two equations:

Eq. 4.19 

� 

B12 = g2
g1
B21   and

Eq. 4.20 

� 

A21 = 2hν
3

c2
B21

From its original definition, we can see that the units of A21 should be [s–1], and from its 

definition, we find the units of B21 (and B12) should be [s–1/(intensity  units)], a combination that 
is not particularly useful to know.

What is important to know is that the Einstein coefficients – which relate to transition 
probabilities for a given set  of atomic energy levels – are atomic properties, and thus, 
independent of temperature.  This means that  these relations should hold, even without 
thermodynamic equilibrium.  Also, these coefficients can be applied to any transition between 
any two levels – not just the levels in our fictitious two-level atom.

The values of the coefficients depend on the atom and levels involved, and also on the type 
of transition.  Order of magnitude estimates for the A-coefficient are given in Table 4.3.

Table 4.3:  Transition probabilities and lifetimes

 Transition A21 Lifetime ≈ 1/A21

 Electric Dipole ≈ 108 s–1  ≈ 10–8 s
 Magnetic Dipole ≈ 104 s–1  ≈ 10–4 s
 Electric Quadrupole ≈ 10 s–1  ≈ 10–1 s

Absorption/Emission Coefficients
In Chapter 2, we introduced the absorption coefficient κν and the emission coefficient  jν ; how 

do these relate to the Einstein coefficients?  
In Equation 2.25 we defined the spontaneous (mass) emission coefficient in terms of the 

energy emitted per gram of matter:  dEν = jν dt dν dω.

We can now use dimensional analysis to write the amount of energy  emitted per gram in 
terms of the Einstein A-coefficient:

Eq. 4.21 dEν
ergs
g

⎛
⎝⎜

⎞
⎠⎟
= hν(ergs)

4π (st)
A21
(s)

N2

(cc)
1
ρ
cc
g

⎛
⎝⎜

⎞
⎠⎟
φ(ν)
(Hz)

⎡

⎣
⎢

⎤

⎦
⎥ dω (st)dt(s)dν(Hz)

Pierce:  Notes on Stellar Astrophysics Chapter 4:  Thermodynamic Equilibrium

83



Here the quantity ϕ(ν) is the line profile – the strength of the emission as a function of 
frequency in the neighborhood of the transition frequency.  (Although we have said that emission 
and absorption require a photon with a frequency exactly matching the energy difference 
between the two levels involved, it turns out that the energy  levels are really not infinitely sharp; 
this permits a narrow range of photon frequencies to participate, which leads to the line profile.  
See Chapter 6.)

Comparing Equation 4.21 to Equation 2.25, it becomes apparent that we may identify  the 
quantity in brackets in Equation 4.21 as jν :

Eq. 4.22 

� 

jν = hν
4πρ

N2A21φ(ν)

Similarly, we may relate the mass absorption coefficient to the appropriate Einstein B-
coefficient:

Eq. 4.23 

� 

κν = hν
4πρ

N1B12φ(ν)

What about stimulated emission?  Where does it fit, now that we have accounted for both κν 
and jν?  Because stimulated emission is proportional to the intensity, it is easier to treat it as 
negative absorption.  Then we can modify Equation 4.23 as follows:

Eq. 4.24 

� 

κν = hν
4πρ

φ(ν) N1B12 − N2B21( )

This is the absorption coefficient, corrected for stimulated emission.  What is the magnitude 
of the correction?

We can transform this expression by substituting a Boltzmann equation for N2 and using 
Equation 4.19 to replace B21:

Eq. 4.25 N2B21 = N1
g2
g1
e−hν /kT

⎛
⎝⎜

⎞
⎠⎟

g1
g2
B12

⎛
⎝⎜

⎞
⎠⎟
= N1B12e

−hν /kT

The absorption coefficient is then as follows:

Eq. 4.26 

� 

κν = hν
4πρ

φ(ν)N1B12 1− e
−hν /kT( )

The exponential term can be estimated for typical values (λ = 4000 and T = 10,000):

Eq. 4.27 

� 

hν
kT

= hc
λkT

≈ 12400
(4000)(8.6e− 5)(10000)

≈ 3.6⇒ e−x ≈ 0.03

So stimulated emission typically reduces absorption by a few percent in the visible.
It can be seen from Equations 4.22 and 4.26 that the absorption coefficient depends on the 

population of the lower level while the emission coefficient depends on the population of the 
upper level, both of which can be determined from the Boltzmann equation and are thus 
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dependent on temperature.  But there is another important process that gives the electrons 
additional options on ways to spend their time and energy.

Ionization
In addition to hopping around from level to level within the atom, an electron may also pack 

its bags and leave altogether, in a process known as ionization.  This could be thought of as 
propelling the electron into a super-excited state, one whose population – which we would like to 
know – could perhaps be described by a Boltzmann equation of sorts.  First, let  us decide on 
some terminology.

For simplicity, let us begin with a neutral atom in the ground state (X0); we will then let it 

ionize, which creates two particles:  a free electron (e–) and an ion (X0
+ – also in the ground 

state).  These three particles will have number densities, energies, and statistical weights as 
shown in Table 4.4.

Table 4.4:  Ionization terminology
Species: Ground State Neutral Atom ⇒ Ground State Ion + Free Electron
Reaction: X0 ⇒ X0

+ + e–

Number Density: N0 ⇒ N0
+ + Ne

Energy: 0 ⇒ χ + 1/2 mev
2

Statistical Weight: g0 ⇒ g0
+ + ge

Here the term χ represents the ionization energy for this atom – the difference in energy 
between the ground state ion and the ground state neutral.  The free electron may  have kinetic 
energy of its own, and this may be any amount, determined by the electron's velocity.  The total 
energy difference  between the ion-electron combination and the neutral atom is then as follows:

Eq. 4.28 ΔE = χ + 1/2 mev
2

The overall statistical weight of the ionized state (g) is the product of the statistical weights 
of the ion and the electron

Eq. 4.29 g = go
+ge

We will now let ΔN0
+(v) be the number density of ground state ions with electrons having 

speeds in the range v → v +Δv .  The statistical weight of these ion-electron combinations is then 
as follows:

Eq. 4.30 Δg = go
+Δge +geΔgo

+

(The second term disappears because the statistical weight of the ground state ion is fixed; 
we are only varying the electron speed.)

If the electron density  is given by Ne , then the volume containing one electron – expressed 
here as a cube of sides Δx, Δy, and Δz – will be the inverse of this quantity:

Eq. 4.31 ΔV =Δx Δy Δz = 1/Ne
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Now the Heisenberg uncertainty principle (Equation 4.32) tells us that we cannot know 
both the position and the momentum of a particle precisely; there will be an uncertainty 
associated with each of these quantities, and these uncertainties are related:

Eq. 4.32 Δx Δpx ≥ h   (and similarly for y and z)

(Note:  Depending on the ultimate goal, the right side of Equation 4.32 may be h, ħ, h/2, or  
ħ/2 , as needed.)

We may now combine the three uncertainly principle equations for x, y, and z to obtain a 
statement about the minimum volume an electron may occupy (ΔVmin):

Eq. 4.33 

� 

ΔV = ΔxΔyΔz ≥ h3

ΔpxΔpyΔpz
= ΔVmin

That is, the electrons in a given gas of electron density  Ne each have available an average 
volume ΔV; the smallest volume each electron could possibly  squeeze into (given the current 
state of the gas) is ΔVmin.  This means that the number of different ways that an electron may 
exist in the gas (the statistical weight) is the current volume divided by the minimum volume:

Eq. 4.34 

� 

Δge = 2 ΔV
ΔVmin

The factor of 2 in this equation comes, of course, from the spin.  Each minimum volume may 
contain two electrons, but only if they have opposite spin.

We can substitute into Equation 4.34 to find this statistical weight in terms of the electron 
momentum:

Eq. 4.35 Δge = 2
ΔV
ΔVmin

= 2 1 Ne

h3 ΔpxΔpyΔpz
=
2ΔpxΔpyΔpz

h3Ne

If we now assume an isotropic distribution of speeds, and hence, momenta, we may write the 
following:

Eq. 4.36 Δpx Δpy Δpz = 4π p2Δp = 4π me
3 v2Δv

This allows us to write the statistical weight of the free electrons (associated with the ions 
described above) as follows:

Eq. 4.37 Δge =
8π me

3v2Δv
h3Ne

At last we are ready to write a Boltzmann equation to relate the population of ions with 
electrons in a particular speed range to the population of ground state neutral atoms:

Eq. 4.38 ΔNo
+ (v)
No

= Δg
go
e−ΔE /kT = go

+

go
8π me

3

h3Ne

e
− χ+1

2
mev

2⎛
⎝⎜

⎞
⎠⎟ kT
v2Δv
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Of course, we are really not concerned with a particular speed range for the electrons; we just 
want to know the relative populations of ions and neutrals.  Thus, we will integrate over all 

speeds, employing the substitution of the dummy variable x ≡ me

2kT
v :

Eq. 4.39 

� 

No
+

No

= 8π me
3

h3Ne

go
+

go
e−χ kT 2kT

me

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3
2

x2e−x
2

dx
0

∞∫

The integral has a value of 

� 

π
4 , and this gives the following result:

Eq. 4.40 

� 

No
+Ne

No

= 2go
+

go
2π mekT

h2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
e−χ kT

This equation is one form of the Saha equation.

Saha Equation
In general, the Saha equation relates the population of ions to that of neutrals, but there are 

several ways to do this, and several forms of the Saha equation as well.  The one given above 
relates ground state ions to ground state neutrals.

We can broaden this expression to include all ions and all neutrals by noting the following 

relations.  The ratio of ground state neutrals to all neutrals is given by 

� 

No

N
= go
U(T )

, and similarly, 

the ratio of ground state ions to all ions is given by 

� 

No
+

N + = go
+

U + (T )
.  We can substitute these 

expressions into Equation 4.40 to obtain a Saha equation that relates the total number density of 
ions (N +) to the total number density of neutrals (N):

Eq. 4.41 

� 

N +Ne

N
= 2U

+ (T )
U(T )

2π mekT
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
e−χ kT

But the Saha equation is even more general, as we may use it to relate the number densities 
of any two successive ionization states (i and i +1):

Eq. 4.42 

� 

Ni+1Ne

Ni

= 2Ui+1(T )
Ui (T )

2π mekT
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
e−χ i kT

There are other ways to write the Saha equation that employ  partial pressures rather than 
number densities of the different components.  Recall the ideal gas law PV = nℜT  (where n is 
not a quantum number but the number of moles of the gas, and ℜ is the gas constant*); this can 
be rewritten, using Avogadro's number (NA)* as follows:
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Eq. 4.43  

� 

P = n
V
ℜT = nNA

V
ℜ
NA

T = NkT

Thus, the electron pressure  is Pe = NekT ; similar expressions can be written for the other 
partial pressures.  In terms of partial pressures, the Saha equation is then as follows (note the 
extra power of kT ):

Eq. 4.44 

� 

Pi+1Pe
Pi

= Ni+1Pe
Ni

= 2Ui+1(T )
Ui (T )

2π me

h2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
kT( )52 e−χ i kT

Equations 4.42 and 4.44 are general equations, valid for any species in local thermodynamic 
equilibrium.  They require input of properties – ionization potential, excitation energies, and 
statistical weights – that are specific to the atom involved.  These are found in tables in the 
literature:

 Cox (2000) Allen (1973) Novotny (1973)
Ionization potentials:   table 3.5  section 16  table 3-4
Statistical weights:   table 3.3  section 15  table 3-2A
Partition functions:   table 3.3  section 15  table 3-2B

The Hydrogen Atom
In real life, atoms do not focus separately  on either excitation or ionization; rather they tackle 

both processes at the same time.  In a given gas, some of the neutral atoms will be in the ground 
state while others will be excited, and some of the atoms will have been ionized, with some of 
these ions being excited as well.  Although this may sound complicated, we now have the tools 
to predict how the atoms will configure themselves for a given set of gas properties – as long as 
we can assume that the gas has reached thermodynamic equilibrium (which is usually  a good 
assumption, at least as a first approximation).

As an example of how this works, let  us consider a gas of hydrogen atoms and inquire how 
these atoms will be distributed among the various possible energy states for a given set of 
conditions.  We will assume that both excitation and ionization processes have had sufficient 
time to reach a state of equilibrium.

We must first establish our terminology.  We will allow the neutral hydrogen atoms to be 
distributed over the different energy  levels ranging from n = 1 (the ground state) to n = m (a 
practical upper limit).  As ionized hydrogen has no bound electron, we need only consider one 
ionized state.  Let the associated number densities be denoted by N1 , N2 , N3 , ... Nm , and N 

+.  As 
we will be calculating a number of ratios, it will be convenient to define these as well:

Let β2 ≡ N2 /N1 ,   β3 ≡ N3 /N1 ,   βm ≡ Nm /N1 ,   and β+ ≡ N+/N1 .

The total number density of hydrogen atoms/ions is found by adding the number densities of 
all of the neutrals and ions:

Eq. 4.45 NT = N1 + N2 + N3 + ... + Nm + N 
+ = N1(1 + β2 + β3 + ... + βm + β+)
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The βn ratios can be found from Boltzmann equations similar to Equation 4.3, using the 

substitutions gn =2n2 and ΔEn = En – E1 = E0 (1 – 1/n2):

Eq. 4.46 

� 

βn = Nn

N1
= gn
g1
e−ΔEn kT = n2e

−Eo
kT

1− 1
n2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

The β+ ratio can be determined by a Saha equation, based on either electron pressure or 
electron number density:

Eq. 4.47 

� 

β+ = N +

N1
= 2g+

g1
2π mek
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
k T

5
2

Pe
e−χ /kT   or

Eq. 4.48 

� 

β+ = N +

N1
= 2g+

g1
2π mek
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2 T

3
2

Ne

e−χ /kT

We now make a few simplifications, noting that the constants E0 and χ are the same for 

hydrogen; thus we may define E0/k = χ/k ≡ B (Pierce's B-coefficient), which has a value of about 

157,800.  In both Saha equations we find another constant 

� 

2π mek
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
≡ A

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ (Pierce's A-

coefficient), which has a value of about 2.4147e15; this can be combined with k  in Equation 4.47 
to form Ak ≈ 0.33338 (another of Pierce's A-coefficients).

We also need statistical weights for the Saha equations.  We already know that  the ground 
state hydrogen atom has statistical weight g1 = 2(1)2 = 2, but  what is the statistical weight of a 
hydrogen ion (g+)?  This turns out to be relatively easy, as there is only one way to have a proton, 
making g+

 = 1; then 2g+/g1 = 2(1)/2 = 1.  With these simplifications, the Boltzmann and Saha 
equations for hydrogen are as follows:

Eq. 4.49 

� 

βn = n2e
−B
T
1− 1
n2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

Eq. 4.50 

� 

β+ = Ak
Pe
T
5
2e−B/T

Eq. 4.51 

� 

β+ = A
Ne

T
3
2e−B/T

It is now a simple matter to use these equations to find the population of any level relative to 
the ground state of neutral hydrogen.  While the temperature is sufficient to determine the 
populations of excited states, the population of ions depends on both temperature and pressure 
(or density), as can be seen from the presence of the electron pressure in Equation 4.50 and the 
electron density in Equation 4.51.  One of these – whichever is more convenient – will be used to 
calculate ionization.
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As an example of how excitation and ionization vary  with temperature, consider the data in 
Table 4.5, for which an electron pressure of 10 (dynes/cm2) has been used, and excitation states 
up to m = 14 have been included.

Table 4.5:  Level populations of hydrogen (relative to ground state) for Pe = 10

 n T=6000 T=8000 T=10000 T=12000
 1 1 1 1 1
 2 1.09e–8 1.50e–6 2.90e–5 2.08e–4
 3 6.33e–10 2.19e–7 7.29e–6 7.55e–5
 4 3.13e–10 1.49e–7 6.02e–6 7.08e–5
 5 2.71e–10 1.49e–7 6.59e–6 8.23e–5
 6 2.83e–10 1.69e–7 7.83e–6 1.01e–4
 7 3.17e–10 1.99e–7 9.48e–6 1.25e–4
 8 3.65e–10 2.36e–7 1.15e–5 1.53e–4
 9 4.24e–10 2.80e–7 1.38e–5 1.85e–4
 10 4.92e–10 3.31e–7 1.64e–5 2.22e–4
 11 5.69e–10 3.86e–7 1.93e–5 2.62e–4
 12 6.54e–10 4.48e–7 2.25e–5 3.07e–4
 13 7.47e–10 5.15e–7 2.60e–5 3.55e–4
 14 8.48e–10 5.88e–7 2.98e–5 4.08e–4
 + 0.00035 0.51785 46.7490 1023.105
 Total 1.00035 1.51786 47.7492 1024.108
 % Ionized 0.04% 34.12% 97.91% 99.90%

Several points should be noted:  
• Excitation (of every  level) increases with temperature.  As more energy is made available 

to the atoms (by way of increased kinetic energy of gas particles), they tend to store 
more of this energy as excitation energy.

• Similarly, ionization increases with temperature as well, as kinetic energy is stored as 
ionization energy.

• All of the excited state populations for hydrogen are small relative to the ground state; most 
neutral hydrogen atoms will be in the ground state, due to the large energy  difference 
between the first two levels.

• The degree of ionization increases dramatically with temperature, such that the ion 
population changes from insignificant to dominant in only  a few thousand degrees.  
Consequently, the excitation of the few remaining neutral atoms becomes less 
important.

Figure 4.2 shows the ionization of hydrogen as a function of temperature; excited states have 
been ignored in this calculation of the percentages.
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Figure 4.2:  Hydrogen ionization at Pe = 10
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Table 4.6:  Level populations of hydrogen (relative to ground state) for T = 9000
 n Pe =1 Pe =10 Pe =100 Pe =1000
 1 1 1 1 1
 2 7.78e–6 7.78e–6 7.78e–6 7.78e–6
 3 1.53e–6 1.53e–6 1.53e–6 1.53e–6
 4 1.16e–6 1.16e–6 1.16e–6 1.16e–6
 5 1.22e–6 1.22e–6 1.22e–6 1.22e–6
 6 1.42e–6 1.42e–6 1.42e–6 1.42e–6
 7 1.70e–6 1.70e–6 1.70e–6 1.70e–6
 8 2.04e–6 2.04e–6 2.04e–6 2.04e–6
 9 2.44e–6 2.44e–6 2.44e–6 2.44e–6
 10 2.89e–6 2.89e–6 2.89e–6 2.89e–6
 11 3.40e–6 3.40e–6 3.40e–6 3.40e–6
 12 3.95e–6 3.95e–6 3.95e–6 3.95e–6
 13 4.55e–6 4.55e–6 4.55e–6 4.55e–6
 14 5.21e–6 5.21e–6 5.21e–6 5.21e–6
 + 62.218 6.2218 0.62218 0.06222
 Total 63.218 7.2218 1.62222 1.06226
 % Ionized 98.42% 86.15% 38.35% 5.86%
The above data was produced at a constant electron pressure.  If we hold temperature 

constant and vary the electron pressure, we obtain the pressure dependence of ionization 
(excitation being independent of pressure).  We can predict  this relation by examining the 
ionization reaction (X ⇌ X + + e–); because the forward reaction transforms one particle into two, 
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increasing the pressure will push the reaction backwards, towards the neutral atom.  This result 
can be seen in Table 4.6.

Figure 4.3:  Hydrogen ionization at Pe = 100
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As electron pressure increases, the degree of ionization decreases.  And as we shall soon see, 
this behavior will be true for the total gas pressure as well.  Figure 4.3 (compare with Figure 4.2) 
shows the effect on ionization of increasing the electron pressure by a factor of 10, to 100.  As 
can be seen, the temperature at which the gas is 50% ionized has increased by about 1000 K.

The principal variables for ionization are temperature and pressure (or density), but the 
atomic parameters (statistical weight and ionization potential) play a role as well.  Of these, the  
more important is ionization potential, due to its position in the exponential.  Elements with low 
ionization potentials are considerably  easier to ionize, and this behavior is observed in stellar 
spectra.

Gas-in-a-box Problem
In the above ionization calculations, we specified the electron pressure (or density) and 

determined the resulting degree of ionization.  But this is not how the stars work.  Stars do not 
have a dial labeled 'Electron Pressure'; instead, they must produce their own electrons by  the 
ionization process, which of course depends on what the electron pressure is.  Stars seem to be 
very adept at reaching ionization equilibrium, and we should be able to figure it out as well.  Let 
us begin with a simple example:  the gas-in-a-box problem.

Suppose that we have a box in which we put atoms of a particular elemental gas, such as 
atomic hydrogen.  We then heat the gas to some equilibrium temperature and inquire as to the 
distribution of particles within.  (We may  assume (or require) that the hydrogen not form 
molecules or any other species other than the neutral atom and the ion.)  This time we do not 
know the electron pressure (or density), but we do know the volume of the box and how many 
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atoms we have put into it, giving us the total number density of hydrogen nuclei (NH).  What is 
the degree of ionization?

By assuming that the hydrogen nuclei must exist as either neutrals (N°) or ions (N 
+), we are 

requiring that NH = N° + N 
+.  We are also assuming that the only source of electrons is the 

hydrogen itself, which means that the electron density must equal the number density  of ions:  Ne 
= N 

+.  Combining these two gives an expression for the number density of neutrals in terms of a 
given quantity and an unknown:

Eq. 4.52 N° = NH – Ne

We will simplify  our analysis by assuming that partition functions can be approximated by 
the ground state statistical weights: U(T) ≈ g0 , U

+(T) ≈ g+, etc.  The appropriate Saha equation is 
then as follows (from Equation 4.40):

Eq. 4.53 

� 

N +

No = Ne

NH − Ne

= 2g+

goNe

2π mekT
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
2
e−χ kT

Recalling that 2g+/g0 = 1 for hydrogen, the variable Ne can then be collected on the left side, 
leaving a function of temperature on the right:

Eq. 4.54 

� 

Ne
2

NH − Ne

= AT
3
2e−B T = f (T )

This is clearly a quadratic equation:

Eq. 4.55 Ne
2
 + f (T)Ne – f (T)NH = 0     ⇒     ax2+bx +c=0

And its solution is given by the well-known quadratic formula:

Eq. 4.56 x = − b
2a

⎛
⎝⎜

⎞
⎠⎟ ± b

2a
⎛
⎝⎜

⎞
⎠⎟
2

− c
a

⇒ Ne = − f (T )
2

+ f (T )
2

⎛
⎝⎜

⎞
⎠⎟
2

+ f (T )NH

Here we have rejected the negative root (as the lead term is already negative, and we demand 
a positive value for Ne).  It should be readily apparent that no matter what the temperature, the 
electron density should increase as the number density of hydrogen increases.  But what about 
the ionization degree?  The fraction of the gas that is ionized is simply the ratio of ions to total 
hydrogen, which is equal to Ne /NH .

Eq. 4.57 Ne

NH

= − f (T )
2NH

+ f (T )
2NH

⎛
⎝⎜

⎞
⎠⎟

2

+ f (T )
NH

This ratio decreases with increasing NH , for any temperature.  Table 4.7 shows how the 
ionization degree varies with NH for a temperature of 7000:
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Table 4.7:  Hydrogen gas-in-a-box for T = 7000
 log NH Ne % Ionized
 9 9.96e+8 99.6%
 10 9.60e+9 96.0%
 11 7.53e+10 75.3%
 12 3.78e+11 37.8%
 13 1.40e+12 14.0%
 14 4.67e+12 4.7%
 15 1.50e+13 1.5%
 16 4.78e+13 0.5%

As predicted, high density  suppresses ionization.  We should expect that denser stellar 
atmospheres should be less ionized (assuming equal temperatures), and this is indeed the case.

Gas Mixtures
Although most stars are composed primarily of hydrogen, they do contain other elements as 

well.  Some of these elements have lower ionization potentials than hydrogen, and thus they will 
ionize more readily.  We now investigate how the ionization of one element will affect the 
ionization of others.

Consider a mixture of two gases, elements X and Y, in a box, at densities Nx and Ny .  For 
simplicity, assume that  partition functions can be approximated by statistical weights and let  G ≡ 
2g+/g0 for each element.  We can then write the ionization reaction and resulting Saha equation 
for each element:

Eq. 4.58 X ⇌ X + + e–     ⇒     Nx
+

Nx
o = Gx

A
Ne

T
3
2e−χx kT

Eq. 4.59 Y ⇌ Y + + e–     ⇒    
Ny

+

Ny
o = Gy

A
Ne

T
3
2e−χy kT

The key  point to note concerns the electron density  Ne , which appears in both equations.  

This quantity includes electrons from both elements; that is, Ne = Nex+Ney = Nx
++Ny

+.  However, 
evaluation of either Saha equation requires knowledge of the value of Ne , which in turn depends 
on the results of both Saha equations.  This dilemma has a relatively simple solution:

1. Assume a value for Ne .

2. Calculate the ratios 

� 

Nx
+

Nx
o  and 

� 

Ny
+

Ny
o  using the Saha equations.

3. Calculate Nx
+ from 

� 

Nx
+

Nx
o  and Nx , and Ny

+ from 

� 

Ny
+

Ny
o  and Ny

 .

4. Calculate a new value of Ne = Nx
++ Ny

+.
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5. Go to Step 2 and iterate until the process converges on one value of Ne .
This process is illustrated by an example involving a gas of the elements sodium and 

magnesium.  The necessary equations are relatively simple:

Eq. 4.60 

� 

βi =Gi
A
Ne

T
3
2e−χ i kT = fi (T )

Ne

Eq. 4.61 Ni
+ = βi

1+ βi

⎛
⎝⎜

⎞
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Ni

Eq. 4.62 Ne = Nx
++ Ny

+

The constants needed are A = 2.4147e+15 and k = 8.6173e–5, and the atomic parameters as 
found in the literature are given in Table 4.8. 

Table 4.8:  Atomic properties for the mixture-in-a-box problem
 Element Na (X) Mg (Y)
 G = 2g+/g0 1 4
 χ (eV) 5.1391 7.6462

We can try to predict which element will have a higher degree of ionization by looking at the 
atomic properties.  The statistical weights give an edge to magnesium, but the ionization 
potentials favor sodium; which of these will prevail depends on the temperature.  

We now choose T = 6000, giving f(T) values of 5.413e+16 for sodium and 1.697e+15 for 
magnesium.  Because f(T) is proportional to the ion/neutral ratio, these values tell us that a 
greater fraction of sodium should be ionized.

The last things needed to solve the problem are the number densities of each element.  For 
simplicity, we will assume equal number densities:  Nx = Ny = 1.2e+16.   We next make an initial 
guess of the electron density:  Ne = 5e+15.  Results of the ensuing calculations are shown in 
Table 4.9.

Table 4.9:  Iterative solution of the mixture-in-a-box problem

 Ne βx βy Nx
+ Ny

+ Ne = Nx
++Ny

+

 5e+15 10.83 0.3394 1.099e+16 3.040e+15 1.4026e+16
 1.4026e+16 3.859 0.1210 9.531e+15 1.295e+15 1.0826e+16
 1.0826e+16 5.000 0.1567 1.000e+16 1.626e+15 1.1626e+16
 1.1626e+16 4.656 0.1459 9.878e+15 1.528e+15 1.1407e+16
 1.1407e+16 4.746 0.1488 9.911e+15 1.554e+15 1.1465e+16
 1.1465e+16 4.721 0.1480 9.903e+15 1.547e+15 1.1449e+16
 1.1449e+16 4.728 0.1482 9.905e+15 1.549e+15 1.1454e+16
 1.1454e+16 4.726 0.1481 9.904e+15 1.548e+15 1.1453e+16
 1.1453e+16 4.726 0.1482 9.904e+15 1.548e+15 1.1453e+16
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The final row gives the solution, for which the electron density  is indeed the sum of the two 
ion densities.  Comparison of these ion densities with the elemental number densities shows that 
the sodium is 82.54% ionized and the magnesium is only 12.90% ionized – which is consistent 
with our prediction.

This problem can sometimes be simplified if the ionization potentials are quite different from 
each other.  For example, if χx = 12 eV and χy = 5 eV, then Y will normally ionize much more 
easily than X, such that we may presume that Y will contribute the majority of the electrons in the 
gas, assuming comparable abundances and moderate temperatures.  We may then approximate 
the electron density by solving the Y-in-a-box problem:

Eq. 4.63 
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We next insert this value into the Saha equation for X to solve for βx and hence, Nex .  One 
should then reaffirm that Nex is indeed much less than Ney .  If not, use the sum Ne = Nex+Ney as an 
initial guess and proceed with the first method.

Of course, real stellar atmospheres have many different elements, but the basic approach will 
still work.  However, most elements have multiple ionization stages, shedding more than one 
electron at higher temperatures.  How can we deal with this problem?

Multiple Ionization Stages
Let us again consider the single gas-in-a-box problem, only this time the gas will be allowed 

to ionize twice.  There will be three atomic/ionic species (X, X +, X ++) along with electrons.  We 
will need four number densities (N°, N +, N ++, Ne ), three partition functions (U °, U +, U ++), 
and the first two ionization potentials for the element (χ1, χ2).  Equipped with these, we can now 
write two Saha equations:

Eq. 4.64 

� 

N +

No = 2U
+ (T )

Uo (T )
2π mekT
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Ne

= f1(T )
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Eq. 4.65 
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We may choose T and calculate the two temperature-dependent functions:

Eq. 4.66 

� 

f1(T ) = 2U
+ (T )

Uo(T )
AT

3
2 e−χ1 kT

Eq. 4.67 

� 

f2 (T ) = 2U
++ (T )

U + (T )
AT

3
2 e−χ 2 kT

This allows us to write the number densities of the ions in terms of the number densities of 
the neutrals and the electrons:

Eq. 4.68 N 
+ = f1(T) N°/Ne
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Eq. 4.69 N 
++ = f2(T) N 

+/Ne  =  f1(T) f2(T) N°/Ne
2

The total number density of all nuclei of X is the sum of the neutrals and ions:

Eq. 4.70 Nx = N° + N 
+ + N 

++ = N° + f1(T) N°/Ne + f1(T) f2(T) N°/Ne
2

Eq. 4.71 Nx = N°{1 + [f1(T)/Ne][1 + f2(T)/Ne]}

Now given a value of Nx , we can guess Ne and calculate N°, and from this find N 
+ and N 

++.  
The new value of Ne is now given by Ne = N 

+ + 2N 
++, because each of the doubly ionized atoms 

contributes two electrons to the gas.  Sufficient iteration then yields a solution.  
Results of such a calculation for helium are presented in Table 4.10 and Figure 4.4.  

Ionization stages have been determined for a helium number density of 1e+12 over temperatures 
ranging from 9000 to 36,000 K.  

Table 4.10:  Ionization equilibrium for helium at NHe =1 ×1012 

 T f1(T) f2(T) Ne N ° N 
+ N 

++ ⇒   Ne

 9000 1.4e+8 6.9e–10 1.2e+10 9.9e+11 1.2e+10 6.9e–10 1.2e+10
 12000 6.0e+11 4.4e–2 5.3e+11 4.7e+11 5.3e+11 4.4e–2 5.3e+11
 15000 9.7e+13 2.3e+3 9.9e+11 1.0e+10 9.9e+11 2.3e+3 9.9e+11
 18000 3.0e+15 3.4e+6 1.0e+12 3.3e+8 1.0e+12 3.4e+6 1.0e+12
 21000 3.7e+16 6.4e+8 1.0e+12 2.7e+7 1.0e+12 6.4e+8 1.0e+12
 24000 2.5e+17 3.4e+10 1.0e+12 4.1e+6 9.7e+11 3.1e+10 1.0e+12
 27000 1.1e+18 7.5e+11 1.4e+12 7.9e+5 6.4e+11 3.6e+11 1.4e+12
 30000 3.7e+18 9.1e+12 1.8e+12 8.4e+4 1.7e+11 8.3e+11 1.8e+12
 33000 1.0e+19 7.1e+13 2.0e+12 5.1e+3 2.7e+10 9.7e+11 2.0e+12
 36000 2.4e+19 4.0e+14 2.0e+12 4.0e+2 4.9e+9 1.0e+12 2.0e+12

Generally only one or two ionization stages of a particular element are present  in significant 
amounts at a given temperature – essentially no neutral helium remains at the temperatures 
where the second ionization begins.  Thus, a model stellar atmosphere is unlikely  to require all 
possible ionization states of every element; only those that play a significant role at the 
temperature of interest need be included – unless of course it is the trace amounts that are of 
interest.
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Figure 4.4:  Ionization of helium at NHe =1 ×1012
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Effect on Transitions
The populations of different atomic/ionic species depend on the temperature and density (or 

pressure) in the atmosphere, via the Saha equation.  
Energy level populations within a species depend on the temperature, via the Boltzmann 

equation.
A given absorption transition depends on the supply  of absorbers (atoms/ions with electrons 

in the lower level of the transition), which depends on the temperature and density (or pressure) 
of the atmosphere.

Figure 4.5:  Balmer line strength as a function of temperature
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Each transition will have certain temperature-density combinations that are more favorable 
than others, with temperature being the more important variable.  In general, the absorption line 
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strength will rise and fall over a range of stellar temperatures as lower excitation levels first 
become populated by higher temperatures and then depleted by ionization, as shown in Figure 
4.5.

Although the peak line strength is labeled H I, n = 2, this does not mean that every neutral 
hydrogen is in the second level.  As we have seen, only a tiny  fraction of the neutrals will be so 
positioned, ready to do Balmer absorption; however, there are so many hydrogen atoms in most 
stars that even small fractions of them can produce noticeable results.

The temperature associated with the maximum line strength for a species depends on the 
atomic properties for that species and also on the density(or pressure) of the gas.  In the next 
chapter we will step back and look at the big picture of how the many  different atomic and ionic 
species combine to produce the variety of stellar spectra we observe.
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CHAPTER 5:  Stellar Spectra
The study of spectra began in 1666 when Isaac Newton passed sunlight through a prism, 

revealing the rainbow of colors that make up  white light.  In 1802, William Wollaston discovered 
that the spectrum of the Sun contained many dark lines; these lines were studied further and 
labeled by Joseph von Fraunhofer around 1814.  In 1859, Gustav Kirchhoff performed 
experiments that finally  explained how different types of spectra – including those with dark 
lines – arise from different types of light sources; his results are given in his three laws of 
spectral analysis.

Kirchhoff's Laws of Spectral Analysis
Kirchhoff's first  law involves an opaque source, which could be a solid, a liquid, or a gas at 

high pressure.  When such a source is heated to incandescence and the radiation is examined 
through a spectroscope, the spectrum shows light at all wavelengths – a continuous spectrum.  
The light is not uniformly intense at each wavelength; rather, the intensity varies slowly with 
wavelength, with the pattern depending on the temperature of the source.  (We may generally 
regard this as a blackbody spectrum.)

For Kirchhoff's second law, the source is a hot, optically thin gas (a gas at low pressure).  The 
spectrum of radiation from this source presents light  only at certain wavelengths, a series of 
bright lines on an essentially  dark background.  This is called a bright line spectrum or an 
emission spectrum.

In Kirchhoff's third law, light from a hot opaque source is passed through a cooler, thin gas 
before being viewed through the spectroscope.  In this case, the spectrum has light at all 
wavelengths except for certain positions where the intensity  is diminished.  This is known as a 
dark line spectrum or an absorption spectrum.

Kirchhoff also noted that the pattern of lines observed in either the emission or absorption 
spectrum depends on the composition of the light source – in particular, the composition of the 
hot, thin gas for the emission spectrum or the cooler, thin gas for the absorption spectrum.  An 
optically thin gas of a particular element emits or absorbs at  wavelengths that are characteristic 
of that element; a gas composed of a mixture of elements will exhibit a spectrum that contains a 
mixture of lines from the various elements.
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Line Formation
The fact that  absorption lines are observed in the spectra of stars implies that the stars 

somehow satisfy the geometry  of the third law, namely that the continuous spectrum of light 
from a hot, opaque body  must be forced to pass through a cooler, thin gas on its way  to the 
observer.  One could reasonably assert that the hot, opaque surface of a star will serve as a 
convenient source of the continuous spectrum, leaving in doubt only  the location of the cooler, 
thin gas where the lines are formed.  Several possibilities come to mind.  

The Earth's atmosphere is an optically thin gas, almost certainly  apt to be cooler than the 
surface of a star; and light from any star must pass through our atmosphere on its way to our 
ground-based telescopes.  However, if this is the answer, then our atmosphere should have the 
same effect on all stellar spectra; we should be seeing the same absorption lines due to 
components of the terrestrial atmosphere in the spectrum of every star we observe.  And we 
could see them, if we were looking for them, but in most cases astronomers are not interested in 
studying these terrestrial atmospheric lines – called telluric lines – because they are not trying to 
study the Earth.  Such lines are usually ignored or avoided.

One might  also imagine the presence of huge clouds of optically  thin gas in space.  We see 
such clouds here and there in the sky, illuminated by radiation from nearby  stars, but there are 
certainly cold, dark clouds that are essentially  invisible to our gaze.  Passage of starlight through 
these interstellar clouds should produce detectable absorption features in stellar spectra – and it 
does.  However, if this is the main cause of stellar absorption lines, then any two stars in close 
proximity to each other – such as a binary star – should exhibit nearly identical spectral lines.  
Furthermore, there should be a strong correlation between the number and intensity  of spectral 
lines and the star's distance – at least  for stars near the Galactic plane; nearby stars should have 
no strong lines.  As neither of these predictions is generally observed, there must be another 
explanation.

Stars, being huge balls of gas, lack distinct boundaries and hard surfaces.  Instead, gravity 
does its best to confine the particles of a gas to a spherical region of space, but there will always 
be some particles that attain sufficient upward velocities and avoid major collisions long enough 
that they may exist in the stellar atmosphere – a loosely defined region of optically thin gas 
above the stellar surface.  As photons emerge from the surface, they must pass through the stellar 
atmosphere on their way to us, giving the star a chance to apply its own unique stamp to its 
spectrum, or to conform to the default spectrum for stars of similar size and temperature.

Just how the star accomplishes this task has not always been obvious.  Early stellar models 
were based on a photosphere – literally 'ball of light' – producing the continuous blackbody 
spectrum, and a reversing layer containing metallic vapors that scattered light at discrete 
wavelengths to make the dark lines.  By now the concept of a reversing layer has long since been 
replaced by one in which the absorption lines are considered to be formed throughout the 
photosphere, but primarily  in the higher, cooler layers.  Thus, the photosphere produces the entire 
spectrum, with different regions contributing more heavily  to the continuum or to the lines, but 
there is no longer an attempt to envision distinct layers.
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Let us assume that the observer sees into the star to some nominal optical depth – say τν = 10.  

(The attenuation at this value [(1 – e–τν) = (1 – e–10) ≈ 0.99995] is sufficiently strong for our 
assertion.)  This will be true whether we are looking at a frequency that is in one of the lines or 
out in the continuum; that  is, τline = τcontinuum .  For each region we may write τ ≈ κρx, where x 
represents the depth of the atmosphere from which the rays emerge, and the other quantities have 
their usual meanings.  We then have the following condition:

Eq. 5.1  κline(ρ x)line = κcontinuum(ρ x)continuum 

Of course the opacity in the line is greater than in the continuum because the line frequency 
matches a transition frequency for some atomic species while the continuum frequency does not.  
This leads to the resulting statement about density and depth:

Eq. 5.2  (ρ x)line < (ρ x)continuum

Thus, compared to the continuum, the line forms at lower density and/or shallower depth, 
both of which translate into lines forming high in the atmosphere.  Because temperature 
generally  diminishes with altitude, the lines are forming in cooler regions, which would then 
have source functions that are less than those for the continuum.  Lower source functions for the 
line frequencies mean that radiation at these frequencies will be less intense than at the 
continuum frequencies, and therefore the lines will be darker (as is observed).

Column Density
The darkness of a line is dependent on the opacity at that frequency; it is also a measure of 

the number of absorbers (of photons of the line frequency) that lie above the stellar surface 
(where the continuum photons are produced).  A useful concept is the column density nc , which 
is the number of absorbers above each projected unit area of the surface along the line of sight.  
This can be approximated by the integral of the number density  (of the species of interest), from 
the stellar surface (where r = R) to the observer (at r = ∞):

Eq. 5.3  

� 

nc ≈ N(r)dr
R

∞∫
Greater column density will provide a greater number of absorbers, which should produce a 

stronger (darker, wider) line.  Of course, as we have already seen, the line strength is also 
dependent on the conditions within the atmosphere, such as temperature and pressure (or 
density), which can determine whether or not a given atom is a potential absorber.

So we have the stellar surface – loosely  defined as the radius at which the continuum optical 
depth approaches infinity – providing a continuous blackbody spectrum characterized by some 
effective temperature (Te), with the photosphere (or atmosphere) above this level producing the 
absorption lines.  The structure of the atmosphere is determined by the effective temperature and 
also by  pressure (or density), due to the role the latter plays in ionization.  However, because 
pressure (or density) varies throughout the atmosphere, we need a parameter that we can use to 
characterize the atmospheric structure in the same way that we use the effective temperature.  
This parameter is the surface gravity of the star:  g = GM/R2.
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Comparing two stars of the same mass, we find that the star with the larger radius will have a 
lower surface gravity.  This means that the atmosphere of the larger star will not be as tightly 
bound to the stellar surface, resulting in an extended atmosphere.  Such atmospheres require less 
pressure to counteract the lower gravitational forces.  In contrast, a smaller radius will produce a 
stronger surface gravity, which will pull the atmospheric particles down closer to the surface, 
resulting in higher pressures.  Thus, stars with the same temperature but different surface 
gravities may have different atmospheres and different spectra.

The value of g for the Sun is given by log g ≈ 4; a star with the same mass and a radius 100 
times as great would have log g ≈ 0.  This range of values covers most of the stars, but not all.

Because the spectra of stars are affected by the stars' effective temperatures (via the 
Boltzmann and Saha equations) and by their surface gravities/pressures (via the Saha equation), 
we can analyze these spectra to give us information about the temperatures and gravities/
pressures/densities in the stellar atmospheres.  Knowledge of opacities allows theoretical 
predictions of line strengths for different combinations of temperature, pressure, and abundance.  
These predictions can then be matched to observed spectra to reveal the stellar conditions.

Of course, this has only become feasible with the development of modern computers.  Before 
that, astronomers had to rely  on centuries of observational data covering thousands of stars in 
hopes of finding the keys to stellar behavior.  One of the fundamental tools to understanding the 
similarities and differences among stars was spectral classification.

Spectral Classification
Spectral classification was begun in the 19th century as astronomers began examining the 

spectra of stars and discovering that they were not all the same.  It was quite natural to sort the 
stars into groups according to the appearance of their spectra, assigning letters of the alphabet to 
distinguish the groups.  However, the underlying causes of these spectral differences were not 
immediately obvious to those working in the field (due to lack of suitable models of the atom, 
etc.), and thus, the alphabetical order of the initial classification schemes did not correspond to 
any particular physical properties of the stars.  Only  later, when it became clear that the principal 
variable affecting stellar spectra was temperature, did our present system of spectral 
classification emerge.  

Harvard System
The Harvard system utilizes seven basic spectral  types – O B A F G K M,  in order of 

decreasing temperature – to classify stellar spectra; subclasses 0 through 9 are also used, 
although not all subclasses are used for each type.  Classification is based on the appearance of 
spectral lines:  which ones are present/absent/strong/weak.  Table 5.1 indicates the characteristic 
features of these spectral types, along with approximate temperature ranges.

Figure 5.1 shows the approximate variation in line strengths of different species over the 
range of spectral types.  (These variations were explained at the end of Chapter 4 and depicted in 
Figure 4.5.)  M I and M II refer to neutral and ionized metal species, respectively.  Although the 
metals have a variety of different ionization potentials, they are generally  less than the ionization 
potential for hydrogen, which in turn is lower than that for helium.  Thus, metallic species ionize 
first in the atmospheres of cool stars while helium ionization is only apparent in the hottest stars.
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Table 5.1:  Characteristics of spectral types
Sp Te Spectral Features
O > 30000 Strong UV continuum; He II absent; highly ionized atoms; H lines weak.
B 30000 - 9900  He I max at B2; He II vanishes beyond B0; H lines develop in late types.
A 9800 - 7400 H lines max at A0; Ca II increases; weak neutral metal lines appear.
F 7300 - 6000 H lines weaken, but conspicuous; Ca II becomes stronger; metals (ions 

and neutrals) increase.
G 5900 - 5200 Ca II H & K become strong; Fe and metals strong; H line weak; CH bands 

strengthen.
K 5100 - 3900 Metallic lines dominate; continuum becomes weak in blue; molecular 

bands (CN, CH) develop.
M < 3900 TiO bands dominate; strong neutral metal lines.

Figure 5.1:  Relative line strength vs. spectral type
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The spectral type and the color of a star are observational quantities that are indicators of the 
stellar temperature (which is not measured directly).  As such they  have both been used to 
characterize stars, most notably in the Hertzsprung-Russell diagram.

The HR diagram was originally developed independently by the American astronomer, 
Henry Norris Russell and the Danish chemical-engineer-turned-astronomer, Ejnar Hertzsprung.  
In 1911, Hertzsprung plotted apparent magnitudes vs. color indices for stars in an individual 
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cluster (which are all at  essentially the same distance).  He noticed a 'main sequence' of hot stars 
for both the Pleiades and the Hyades clusters and also a few luminous red stars for the latter 
cluster.  In 1913, Russell used measured stellar parallaxes to determine absolute magnitudes for 
relatively nearby  stars and plotted these magnitudes against Harvard spectral types to obtain his 
'Russell diagram'.  This also featured a main sequence, but the stars divided into two groups at 
the cooler spectral types, which Russell termed 'giants' and 'dwarfs'.  It soon became evident that 
the two astronomers were achieving the same result with slightly different techniques; in 1933 
their efforts were combined as the Hertzsprung-Russell diagram, a version of which is shown in 
Figure 5.2.  (The small circle marks the Sun's position.)

Figure 5.2:  An HR diagram, with the main sequence, giants, supergiants, and white dwarfs 
indicated
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Note that at a given temperature, there can be stars with different luminosities.  Russell's 
'giants' are still known as giants, and his 'dwarfs' are the cooler main sequence stars – where the 
division is observed.

There are lesser numbers of supergiants across the top of the diagram.  These had 
distinguished themselves to early classifiers by  their extremely sharp, narrow lines, and had been 
determined to have high luminosities.  The white dwarfs exhibit limited spectral features, which 
are highly broadened, indicating high-pressure atmospheres.  Typical surface gravities for white 
dwarfs are around log g ≈ 7.

The size of a star can be calculated if its luminosity  and surface temperature are known.  
From Equation 2.118 we have F = σTe 

4, and the flux is equal to the luminosity  divided by the 
star's surface area:

Eq. 5.4  

� 

F = L
4πR2

Combining these gives the desired relation:

Pierce:  Notes on Stellar Astrophysics Chapter 5:  Stellar Spectra

105



Eq. 5.5  L = 4πR2 σTe
4   or  log L = 2 log R + 4 log Te + constant  

Stars with the same radius will fall on a straight line across a plot of log L vs log T (an HR 
diagram), as shown in Figure 5.3.

Figure 5.3:  Stars of constant radii, in solar units
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Luminosity Class
In addition to temperature effects there are also variations observed in spectra that are due to 

pressure (or density) effects.  Some of these involve the enhanced ionization produced by low 
pressure; others are due to the reduced collision rate in atmospheres at low pressure.  Collisions 
between atoms tend to perturb the energy levels of the outer electrons – those usually involved in 
transitions.  If a transition occurs during a collision, the photon absorbed will have a frequency 
slightly different from its normal value, effectively broadening the line.  Stars with higher 
pressure atmospheres will thus exhibit greater pressure broadening and be distinguishable from 
stars with lower pressure atmospheres, which should produce narrower lines.

As described above, the pressure is characterized by the surface gravity, which in turn 
depends on the size of the star.  At a given temperature, larger stars will have lower surface 
gravity, lower pressure, less broadening, and sharper lines, while smaller stars should have 
broader, fuzzier lines.  Within an individual spectral sub-type, stars may be classified according 
to the sharpness or fuzziness of their lines, which effectively  separates the stars by  size, and also 
by luminosity  (as their temperatures will all be similar).  The ability to assign a luminosity class 
to a star based on the appearance of its spectral lines has become essential to our understanding 
of stellar distributions and stellar evolution.  The basic luminosity classes used today are 
designated by Roman numerals, ranging from I (sharpest lines) to V or VI (fuzziest lines), as 
shown in Figure 5.4.
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Figure 5.4:  Luminosity classes on the HR diagram
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Luminosity class names are related to the established HR diagram groups, as shown in Table 
5.2.  Luminosity class designations are commonly appended to spectral types, as B3V or F8I.  
The Sun is a G2V – a main sequence star.

Table 5.2:  Luminosity classes
 I supergiants
 II bright giants
 III giants
 IV subgiants
 V main sequence (dwarfs)
 VI subdwarfs

Additional Nomenclature
Additional spectral nomenclature has been developed to designate particular features:  
Before the current luminosity classes were introduced, prefixes were used to indicate 

supergiants (c – based on their fine, narrow lines), giants (g), and main sequence dwarfs (d), with 
the giants and dwarfs only used for spectral types F through M.  Examples are cF8, gM2, and 
dK5.

Emission lines are relatively rare in stellar spectra, but they do occur in the following cases:
• Wolf-Rayet stars are O stars with emission lines of carbon (type WC) or nitrogen (type 

WN).
• Some O stars show emission lines of He II and N III (type Of).
• Long-period variable stars (LPVs) show periodic emission lines of H I and other elements, 

due to the passage of shock waves through the stellar atmosphere (usually type Me).
• Novae (type Q) show emission lines.
• Some B stars show emission lines (type Be).
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• Late M dwarfs may be chromospherically  active, with prominences – see Kirchhoff's 
second law – providing a large fraction of the star's luminosity (type dMe).

Additional spectral types have been developed to cover stars of different compositions and 
temperatures:

• Late giant stars may show ZrO molecular bands (type S) rather than the TiO bands 
normally found in M  stars.  Type C stars show bands of different carbon compounds, 
such as CH, CN, and C2.  These differences are believed to be due to the relative 
abundances of carbon and oxygen in the stellar atmosphere:  M stars have O > C, C 
stars have O < C, and S stars have O ≈ C.  Such differences may be caused by dredge-
up of carbon from the core (see Chapter 13).

• In recent years, the cool end of the spectral sequence has been extended to include type L 
(with T ≈ 1300 to 2000), type T (with T ≈ 700 to 1300), and type Y (with T < 700).  
Such 'stars' will emit primarily in the infrared.

Molecular Spectra
While the atmospheres of stars are far too hot for most molecules to exist, there are a variety 

of simple molecules that may be found in and around the cooler stars.  Most of these will be 
diatomic molecules, made from two atoms that join together by sharing electrons in flexible, 
covalent bonds.  Such molecules can perform tricks that spherically  symmetric atoms can only 
dream about.

Rotational and Vibrational States
A diatomic molecule may rotate about an axis perpendicular to its bond (see Figure 5.5a), 

storing energy as rotational kinetic energy.  Quantum mechanics prescribes only certain 
allowable rotation frequencies, which are indicated by the rotational quantum number J.  (Note: 
This J does not equal L + S.)  The energy associated with rotation is Erot .

A diatomic molecule may also vibrate along the line of the bond (see Figure 5.5b), storing 
energy as vibrational kinetic energy.  Again, quantum mechanics prescribes only certain 
allowable vibration frequencies, which are indicated by the vibrational quantum number v.  The 
energy associated with vibration is Evib .

Figure 5.5:  A rotating diatomic molecule (a) and a vibrating diatomic molecule (b)

 a b
In addition, the electrons in a molecule may store electronic energy Eelec , just as is possible 

in an atom.  The total energy of a molecule is then the sum of its electronic, vibrational, and 
rotational energies:

Eq. 5.6  E = Eelec + Evib + Erot
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In practice, spectroscopists use wave numbers in place of energies, obtained by dividing E by 
hc.  A simplified rotational term F(J) (in cm–1) is as follows:

Eq. 5.7  F(J ) = Erot

hc
= B J(J +1)    where 

� 

B = h
8π 2cI

B is the rotational constant, and the value of I it contains is the rotational inertia of the 
molecule.

Similarly, a simplified vibrational term G(v) is as follows:

Eq. 5.8  G(v) = Evib

hc
=ω v+ 1

2
⎛
⎝⎜

⎞
⎠⎟    where ω = 1/λ 

However in reality, the rotational model is not independent  of the vibrational model, making 
both terms into series expansions:

Eq. 5.9  F = Bv J(J +1) – Dv J
 2(J +1)2 + ...

Eq. 5.10 G = ωe(v + 1/2) – ωe xe(v + 1/2)
2 + ωe ye(v + 1/2)

3 + ...

The complete term designation is then of the following form, where Telec is the electronic 
term:

Eq. 5.11 T = Telec + G + F

In general, the spacing between electronic energy levels will be fairly wide, with vibrational 
levels more closely spaced and rotational levels very closely  spaced, as shown in Figure 5.6.  
Electronic energy level A has several different vibrational levels (v") associated with it, and each 
of those has a number of different  rotational levels (J"), which are very closely  spaced.  The 
upper electronic level (B) is similarly structured.  (Note:  It is customary to label the upper 
vibrational and rotational levels in a transition with a single prime and the lower levels with a 
double prime.)

Transitions between the upper and lower levels may be purely electronic, purely vibrational, 
or purely  rotational in nature, in which case the wavelengths involved will occupy particular 
regions of the spectrum.

• Purely rotational transitions, with small ΔE are found in the radio and far infrared.
• Purely vibrational transitions, with medium ΔE are found in the near infrared.
• Purely electronic transitions, with large ΔE are found in the visible.
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Figure 5.6:  Molecular energy levels – electronic, vibrational, and rotational
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Band Structure
Alternatively, electronic transitions between two levels (A and B) may also involve changes 

in the vibrational and/or rotational states of the molecule, subject to quantum mechanical 
selection rules.  In this case the change in energy is given by  the sum of the changes in each type 
of energy:

Eq. 5.12 ΔE = ΔEelec + ΔEvib + ΔErot

In this case, each electronic transition produces not  just a single line, but a set of lines or 
band.  Changes in rotational energy ΔErot produce a rotational band, with lines spaced typically 1 
to 10 Å apart.  Changes in vibrational energy ΔEvib then produce several rotational bands, spaced 
on the order of 100 Å apart, as shown in Figure 5.7.

Figure 5.7:  Rotational-vibrational bands

1-10Å!100Å
due to "v due to "J

Notation
Molecular spectra are thus more complex than atomic spectra, and as might be expected, the 

notation for molecular spectra is also more complex.  But there are a few similarities that will be 
useful.  In general, the notation is about the same, except that for molecular spectra, the Greek 
alphabet is used, as shown in Table 5.3.  As expected, the molecular term notation introduces a 
few new wrinkles that were not needed for the atomic notation.
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Table 5.3:  Molecular spectroscopic notation
 Atomic Molecular
Electron configurations ℓ = s, p, d, f, g, ... λ =σ, π, δ, ϕ, γ, ...

Terms L = ∑ ℓ = S, P, D, F, G, ... Λ= ∑ λ = Σ, Π, Δ, Φ, Γ, ...

Terms of non-equivalent electrons: ss → 1S, 3S σσ → 1Σ +, 3Σ + 
  (+ is for symmetry)

Terms of non-equivalent electrons: sp → 1P, 3P σπ → 1Π, 3Πr

  (r indicates a regular multiplet)

Terms of non-equivalent electrons: pp → 1S,1P,1D,3S,3P,3D ππ → 1Σ +,3Σ +,1Σ –,3Σ – ,1Δ, 3Δr

A much more thorough discussion of the spectra of diatomic molecules can be found in 
Herzberg (1950).

In the next chapter, we will examine the profiles of individual spectral lines to see how they 
can provide us with further information about the stellar atmosphere.
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CHAPTER 6:  Line Profiles
In the previous chapter we saw how a star can be assigned to a spectral type, based on the 

presence or absence, strength or weakness of its absorption lines.  We also noted that the 
appearance of its spectral lines can be used to assign a star to a luminosity class.  In both cases, 
we are making use of the fact that for a given transition, a collection of atoms can absorb photons 
over a small range of frequencies, rather than just one (as our earlier discussion of the Bohr 
model might lead us to believe).  The various mechanisms of line broadening and their effects on 
the line profile are the subject of this chapter; our goal is to be able to deduce information about 
the stellar atmosphere by examining the profiles of a star's spectral lines.

The Natural Line Profile
According to the Bohr model of the atom, electrons may exist only in discrete energy  levels.  

Transitions between two such levels should therefore involve a precise change in the energy of 
the atom, corresponding to a photon of a certain well-defined frequency:  absorption lines should 
be infinitely  sharp.  However, this is really not the case.  Even in the absence of external 
broadening mechanisms, the line will be naturally broadened.

The Wave Equation
In order to investigate the interaction of an electromagnetic wave with matter, we begin with 

the wave itself.  Consider an incident electromagnetic wave traveling in the +y direction, with its 
electric field oscillating in the x direction, as shown in Figure 6.1.

Figure 6.1:  The electromagnetic wave (magnetic field not shown)

!E y

x

The function E that gives the magnitude of the oscillating electric field must satisfy the wave 
equation:
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Eq. 6.1  ∂2E
∂t 2

= v2 ∂
2E
∂y2

 , where v is the wave velocity.

Any field for which E is a function of the quantity (y ± vt) will satisfy this equation.
The wave velocity v is the speed of light waves in the medium, and this can be found from 

the following expression:

Eq. 6.2  v = εoµo

εµ
c

The quantity  εo is the electric constant = the absolute permittivity of free space (vacuum), 
while ε is the absolute permittivity  of the medium – a measure of the degree to which the 
medium resists the flow of charge.  Some authors use εr ≡ ε/εo = the relative permittivity  = the 
dielectric constant.

The quantity µo is the magnetic constant = the absolute permeability of free space, while µ 
is the permeability of the medium.

The permittivity  ε measures the extent of polarization of the medium, while the permeability 
µ measures the extent of magnetization of the medium.  For most gases, µ = µo , and the wave 
velocity reduces to the following:

Eq. 6.3  v = εo
ε
c

We now recall from electromagnetism that within the medium there are three quantities of 
interest related to the electric field:    

� 

 
E  is the electric field strength,   

� 

 
D  is the electric 

displacement, and   

� 

 
P  is the electric polarization.  These are illustrated in Figure 6.2, which 

depicts the electric field inside a parallel-plate capacitor that is filled with a dielectric medium. 

Figure 6.2:  Electric field vectors within a dielectric medium
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� 

 
E 

The displacement   

� 

 
D  is determined by the free charges on the capacitor plates.  The 

displacement induces molecules in the medium to polarize and align such that their positive ends 
point in the direction of   

� 

 
D .  The alignment of these polarized molecules produces an induced 
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field (  

� 

−
 
P ) in the medium that is opposite in direction to   

� 

 
D .  The net field is then proportional to 

the sum of these two fields:  
 

E ≈

D + −


P( ) .  The actual relations among these three quantities 

involve the permittivities:

Eq. 6.4    

� 

 
D = ε

 
E = εo

 
E +
 
P 

Eq. 6.5    

� 

 
P = ε −εo( )

 
E 

Now, as noted above, we need an electric field strength that varies with time and with 
position along the wave in a manner prescribed by the wave equation:

Eq. 6.6  E = f y ± εo
ε
ct

⎛

⎝⎜
⎞

⎠⎟

To accomplish this, we will let the x-component of the electric field take on the form of a 
plane wave traveling in the +y direction:

Eq. 6.7  

� 

E = Eoe
iω t− ε εo y c( )

We will now let this field interact with the absorbing atoms in the gas, which are modeled as 
dipole charge oscillators, as shown in Figure 6.3. Here the two charges (+q and –q) separated by 
a distance x produce a dipole moment   

� 

 p = q  x .  The electric field induces charge separation in the 

dipoles, and we can use this interaction to determine a value for ε/εo .

Figure 6.3:  The dipole charge oscillator model

+

– q

q

!x !p

If the number of dipoles per unit volume is N, and each dipole has a dipole moment   

� 

 p = q  x , 
then the electric polarization produced by the dipole separation is as follows:

Eq. 6.8    

� 

 
P = N  p = N q  x 

Note that the vectors  

D,

E,

P,  and   

� 

 x  all point in the same direction.  This allows us to 

remove the vector notation.

Eq. 6.9  
  

� 

 
D = ε

 
E ⇒ ε = D

E

Eq. 6.10 
  

� 

 
D = εo

 
E +
 
P ⇒ εo = D −P

E

Combining these equations gives the dielectric constant:
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Eq. 6.11 

� 

ε
εo

= D
D −P

= εoE +P
εoE

=
E + Pεo
E

=
E + Nqx

εo
E

Now in cgs units, the constant 4πεo is equal to 1; therefore, 1/εo = 4π.  We will also write the 
charge q as the electron charge e, as we are dealing with electronic transitions.  The dielectric 
constant can then be written as follows:

Eq. 6.12 

� 

ε
εo

= E + 4πNex
E

=1+ 4πNex
E

Damped Harmonic Oscillator
We now consider a single oscillator located at y = 0, and driven by the electric field of the 

wave.  At this point the form of the electric field of the wave is simplified (from Equation 6.7):

Eq. 6.13 E =Eoe
iωx

We may model this system as a damped harmonic oscillator, for which the restoring force 
is proportional to the displacement, and the damping force is proportional to the velocity  of the 
charge.  Writing Newton's second law (a = ∑F/m ) we find the equation of motion of the charge:

Eq. 6.14 

� 

˙ ̇ x = e
m

Eoe
iωt −ωo

2x −γ ˙ x  (where m = me)

In this equation, the first term on the right represents the driving force (the electric field of 
the wave), the second term is the restoring force (where ωo is the natural frequency), and the 
third term is the damping force (with γ being the damping constant – to be discussed later).  
Rewriting this equation we obtain a second-order linear differential equation:

Eq. 6.15 

� 

˙ ̇ x +γ ˙ x +ωo
2x = e

m
Eoe

iωt

We may suppose that the charge will attempt to oscillate in a manner prescribed by the wave 
(which is driving the oscillation); thus the position of the charge should be given by the 
following:

Eq. 6.16 x =xoe
iωx

We next find the time derivatives of x:

Eq. 6.17 

� 

˙ x = iω xoe
iωt = iω x    and

Eq. 6.18 

� 

˙ ̇ x = i2ω2 x = −ω2 x

Inserting these derivatives into Equation 6.15 gives a linear equation in x:

Eq. 6.19 –ω2x +iγωx +ωo
2 x =(e/m) Eoe

iωx

This can easily be solved for x to give the following:
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Eq. 6.20 

� 

x = e
m

Eoe
iωt

ωo
2 −ω2 + iγω

= e
m

E
ωo
2 −ω2 + iγω

This expression can then be substituted into Equation 6.12 to yield the dielectric constant:

Eq. 6.21 

ε
εo

= 1+ 4πNex
E

= 1+ 4πNe
E

e
m

E
ωo

2 −ω 2 + iγω
⎛
⎝⎜

⎞
⎠⎟

    = 1+ 4πNe2

m
1

ωo
2 −ω 2 + iγω

⎛
⎝⎜

⎞
⎠⎟
= 1+δ

Equation 6.7 requires the square root of this ratio.  If we assume that ε ≈ εo , then δ << 1 and 
we can approximate the root by using a binomial expansion:

Eq. 6.22 ε
εo

= 1+δ ≈1+ δ
2
= 1+ 2πNe

2

m
1

ωo
2 −ω 2 + iγω

⎛
⎝⎜

⎞
⎠⎟

The complex denominator can be made real by using the standard transformation:

Eq. 6.23 

� 

1
a+ ib

= 1
a+ ib

⋅ a − ib
a − ib

= a − ib
a2 +b2

This yields the following expression:

Eq. 6.24 ε
εo

= 1+ 2πNe
2

m
ωo
2 −ω 2( )

ωo
2 −ω 2( )2 + γ 2ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− i 2πNe2

m
γω

ωo
2 −ω 2( )2 + γ 2ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= n − ik

The quantity n – ik is the complex index of refraction.  (Note that n is not a quantum 
number, and k is neither a wave number nor the Boltzmann constant.)  Although it was 
determined by letting y = 0, we can apply it to general values of y as well:

Eq. 6.25 E = Eoe
iω t− ε εo y c( ) = Eoe

iω(t–(n–ik)y/c) = Eoe
iω(t–ny/c)e–kωy/c

The first exponential factor (eiω(t–ny/c)) is the plane wave; the second factor (e–kωy/c) represents 
the extinction of the wave as it is absorbed by the medium.

The intensity of the radiation is proportional to the square of the amplitude (E*E, where E* is 
the complex conjugate).  The intensity is then as follows:

Eq. 6.26 I =Io(e
–iω(t–ny/c)e–kωy/c)(eiω(t–ny/c)e–kωy/c) = Ioe

–2kωy/c =Ioe
–τ = Ioe

–κρy

And we can use this result to obtain an expression for the absorption coefficient:

Eq. 6.27 

� 

κωρ = 2kω
c

= 4πNe
2

mc
γω2

ωo
2 −ω2( )2 +γ 2ω2
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This is a sharply  peaked function of ω that is non-zero only when ω ≈ ωo  – that is, when the 
photon frequency  ω matches the transition frequency ωo.  When these two frequencies are close, 
we can make the following simplifying approximation:

Eq. 6.28 ωo
2– ω2 = (ωo+ ω)(ωo– ω) ≈ 2ω(ωo– ω) = 2ω Δω

Then the absorption coefficient in the region of the line is as follows:

Eq. 6.29 

� 

κωρ ≈ 4πNe
2

mc
γω2

4ω2 (Δω)2 +γ 2ω2 = N π e2

mc
γ

(Δω)2 + γ 2( )2

Dispersion Profile
Figure 6.4 shows the typical form of this function; in general, the curve is sharply peaked at 

Δω = 0.  It goes by several names, including the dispersion profile, the damping profile, the 
Lorentzian profile, the Cauchy curve, and the witch of Agnesi.

Figure 6.4:  A dispersion profile

!!

"!

Figure 6.5:  The halfwidth (FWHM) of a dispersion profile

!!o

FWHM
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A useful concept in describing line profiles is the halfwidth, or – more precisely – the full 
width at half maximum (FWHM).  This is found by measuring the width of the profile at a 
frequency ω where the value of the profile is one half the maximum value (which of course is 
located at ωo).  The value of the halfwidth is then given by  FWHM  = 2(ω –  ωo) = 2Δω.  The 
halfwidth is illustrated in Figure 6.5.

Absorption Cross Sections
The quantity  given as the absorption coefficient in Equation 6.29 is not  quite what we want, 

as it gives the mass absorption coefficient κ as a function of the angular frequency ω, rather than 
the frequency ν.  We can modify this relation by writing the dispersion profile in terms of cross 
sections, using the following simple transformation:

Eq. 6.30 κ ρ = Nσ     ⇒     σ = κρ/N

In terms of angular frequency ω, we have the following cross section:

Eq. 6.31 

� 

σω = κρ
N

= π e2

mc
γ

(Δω)2 + γ 2( )2
= 2π e

2

mc
γ 2

(Δω)2 + γ 2( )2

This cross section has a halfwidth given by FWHM = γ = 2 Δω, where Δω = ω – ωo .

Similarly, employing the relations ω = 2πν  and λ = c/ν, we may obtain cross sections in terms 
of frequency and wavelength, along with their accompanying half-widths:

Eq. 6.32 

� 

σν = e2

mc
γ 4π

(Δν)2 + γ 4π( )2
  FWHM = γ/ 2π = 2Δν  Δν = ν –νo .

Eq. 6.33 

� 

σλ = e2

mc
λ2

c
γλ2 4πc

(Δλ)2 + γλ2 4πc( )2
 FWHM = γ λ2/ 2πc = 2Δλ Δλ = λ – λo .

Now to find the total absorption of a line, we could integrate the line profile over all 
frequencies (ignoring the fact that we obtained the line profile by  assuming the frequency was in 
the vicinity of the transition frequency).  The total absorption of a line is then given by the 
following:

Eq. 6.34 

� 

σν0

∞∫ dν = σν−∞

∞∫ d(Δν) = a b
x2 +b2−∞

∞∫ dx  where 

� 

a = e2

mc
 and 

� 

b = γ
4π

This integral can easily be solved:

Eq. 6.35 a b
x2 + b2−∞

∞

∫ dx = ab 1
b

⎛
⎝⎜

⎞
⎠⎟ tan

−1 x
b −∞

∞

= a π
2
− −π
2

⎛
⎝⎜

⎞
⎠⎟ = aπ = πe2

mc

Evaluation of this expression gives a value of 0.02654 ergs/(sec-ster-atom) – the energy 
absorbed by the total line from a unit  Iν beam.  Alternatively, we can find the total energy taken 
from an Iλ beam:
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Eq. 6.36 

� 

σλ0

∞∫ dλ = σλ−∞

∞∫ d(Δλ) = π e2λ2

mc2

Oscillator Strength
These are theoretical values.  Actual measurements show these amounts to be too large.  

Therefore we will now introduce a factor ƒ (from a quantum mechanical treatment of the 
problem) such that it scales our theoretical value to the correct result:

Eq. 6.37 

� 

σν0

∞∫ dν = πe2

mc
f

This factor is known as the Ladenburg ƒ value or the oscillator strength.  It is equivalent to 
the fractional number of electron oscillators per atom for a given transition.

The oscillator strength is different  for each level and is related to the Einstein B-coefficient 

B12 (from Chapter 4) because we must have 

� 

σν0

∞∫ dν = hν
4π

B12 .  This requires the following:

Eq. 6.38 

� 

f = mc
4π 2e2

hνB12

Equations 4.19 and 4.20 give 

� 

A21 = 2hν
3

c2
g1
g2
B12  , which produces the following relations:

Eq. 6.39 

� 

f = mc3

8π 2e2ν 2
g2
g1
A21 = mcλ2

8π 2e2
g2
g1
A21

This is an oscillator strength for absorption (ƒabs); We can also define an oscillator strength 
for emission (ƒem) by utilizing the statistical weights of the upper and lower levels:

Eq. 6.40 gu  fem = gℓ  fabs

Allen (1973) and Cox (2000) give tables of gƒ, which can be used for either product.  
Oscillator strengths can also be determined empirically in the lab.  For hydrogen, Kramers' 
formula gives the following:

Eq. 6.41 
 
f = 25

3 3π
gbb
n
5nu

3
1
n
2 −

1
nu
2

⎡

⎣
⎢

⎤

⎦
⎥

−3

Here nℓ and nu are quantum numbers for the lower and upper levels, and gbb is the bound-
bound Gaunt factor, which has a value on the order of 1.  Some calculated oscillator strengths for 
Balmer lines are given in Table 6.1.
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Table 6.1:  Oscillator strengths for Balmer lines (Gray 1976, Bowers & Deeming 1984)
 Line ƒ
 Hα 0.640742
 Hβ 0.119321
 Hγ 0.044670
 Hδ 0.022093
 Hε 0.012704
 Hζ 0.008036

Damping Constant for Radiation Damping
We now turn our attention to determination of a value for the damping constant for natural 

broadening (radiation damping), which was introduced in Equation 6.14.  As our subsequent 
calculations have shown, the damping constant is proportional to the natural broadening 
halfwidth and is thus of some interest.

We can obtain a classical value for the damping constant γ from the rate at which an 
accelerated charge loses energy (W):

Eq. 6.42 dW
dt

= −γ W     ⇒    W = Wo e
– γ t

This results in the following expressions for γ, in terms of ω, ν, and λ:

Eq. 6.43 

� 

γ = 2
3
e2

mc3
ω2 = 8π

2

3
e2

mc3
ν 2 = 8π

2

3
e2

mc
1
λ2

A numerical value for γ is 2.47e–22 ν2 s–1.  This results in a halfwidth (in λ form) as follows:

Eq. 6.44 FWHM = γλ2

2πc
= 4π
3

e2

mc2
= 1.18 ×10−4   Å for all lines

This classical result is smaller than what is observed by an order of magnitude, indicating a 
quantum mechanical treatment is needed.  We begin by assuming the energy  is quantized 
(because energy is absorbed and emitted in photons):

Eq. 6.45 W = Nu hν  where Nu is the upper level population

Then the rate at which energy is emitted is as follows:

Eq. 6.46 dW
dt

= −γ W ⇒ dNu

dt
= −γ Nu

Now the rate at which electrons leave the upper level must be equal to the rate at  which 
electrons enter all the various lower levels:

Eq. 6.47 
  

� 

dNu

dt
= dNu

dt

∑ = −Nu Au


∑

Here Nuℓ is the number of downward transitions and Auℓ is the Einstein A-coefficient.
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Comparing these last two equations, we find an expression for the damping constant:

Eq. 6.48 
  

� 

γ u = Au


∑

Then the lifetime of the excited state is the inverse of this value:

Eq. 6.49 

  

� 

Δt = 1
γ u

= 1
Au



∑

In general, we should also allow for stimulated emission (to level ℓ) and absorption to higher 
levels (k):

Eq. 6.50 
  

� 

γ u = Au
<u
∑ + IνBu

<u
∑ + IνBuk

k>u
∑

Figure 6.6:  Transitions into and out of the upper (u) and lower (ℓ) levels of interest, via 
spontaneous emission (a), stimulated emission (b), and absorption (c)
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j
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a

b
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We can write a similar expression for the damping constant for the lower level ℓ, where the 
levels are as shown in Figure 6.6.  These are needed for strong radiation fields.

Eq. 6.51 
  

� 

γ = Aj
j<
∑ + IνBj

j<
∑ + IνBu

u>
∑

Thus each energy level is broadened; the broadening of the line is then a combination of the 
broadening for both levels because a given transition may combine a range of different lower 
levels with a range of different upper levels.

Eq. 6.52 γlin vbge = γu + γℓ
Figure 6.7 shows how the broadening of each energy level contributes to the overall 

broadening of the line, by allowing photons of a range of energies to participate in the transition.
Note that all levels must be broadened, except for the ground state, which may be infinitely 

sharp.  This is due to the uncertainty  principle, which says that ΔxΔp ≥ ħ.  This relation can be 
manipulated to yield the alternative form:

Eq. 6.53 ΔxΔp = (ΔxΔp/Δt)Δt = (ΔxΔF)Δt = ΔEΔt ≥ ħ
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Figure 6.7:  Broadening of the line produced by the two broadened levels
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Because an atom may  remain in the ground state for an extremely  long time, the uncertainty 
in the energy of the ground state (ΔE ≥ ħ/Δt) may  be quite small.  Excited states – which have 
much shorter lifetimes – must have greater uncertainties in their energies.

This type of broadening is called radiation damping, and the value of γ depends on all 
possible transitions in and out  of both levels involved in the transition of interest.  Radiation 
damping depends only on atomic properties and is thus independent of the atom's environment.  
This means that if other (external) broadening mechanisms are absent or minimal, the line profile 
will convey little information about the state of the atmosphere.  Normally, this is not the case 
however, as there are plenty of other ways in which a line may be broadened.

Pressure/Collisional Broadening
Pressure broadening, which was mentioned in the previous chapter in conjunction with the 

determination of luminosity class, is caused by collisional interactions between absorbing atoms 
and other atoms, ions, electrons, etc.  These collisions perturb the atomic energy levels and thus 
alter the energy of a transition; upper (outer) levels are generally affected more.

The general form of pressure broadening is given by Δv =Cn /R
n, where R is the separation 

between the absorbing atom and the perturber, and Cn is an interaction constant, which is 
different for each transition and generally unknown.  Table 6.2 lists several types of pressure 
broadening.

These all result in dispersion profiles with widths γn .  The total dispersion profile then has a 
width γ = ∑ γn , where the sum is over the halfwidths resulting from all of the different 
mechanisms that produce dispersion profiles.
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Table 6.2:  Types of pressure broadening
n Type Lines Affected Perturber
2 Linear Stark hydrogen p+, e–

4 Quadratic Stark most lines, especially in hot stars e–

6 van der Waals most lines, especially in cool stars H

Thermal/Doppler Broadening
A completely different type of line profile results from a mechanism that plays a very 

important role in stellar spectra:  the motions of atoms within a gas.  Gas particles move 
randomly, with different directions and different speeds.  The distribution of particle speeds is 
characterized by the temperature of the gas, which is a measure of the average kinetic energy  of 
a particle.

Motions are important because relative motion between the source and the observer produces 
a Doppler shift – a difference between the frequency  of light absorbed by the source and the 
frequency of the absorption line measured by the observer.  Along the observer's line of sight 
through the gas, some atoms will be moving away from and others toward the observer, resulting 
in Doppler shifts to frequencies both above and below the transition frequency.  This is known as 
thermal broadening or Doppler broadening.  Only the component of a particle's velocity that 
is along the line of sight – the radial velocity – will contribute to Doppler broadening; tangential 
components may be ignored.

Doppler Profile
We wish to determine the line profile produced by Doppler broadening for a transition 

frequency vo (the line center in the rest frame) and a radial velocity vr .  The Doppler shift is 
proportional to the radial velocity:

Eq. 6.54 Δv = v – vo = vo (vr/c)

If the gas as a whole is at rest  with respect to the observer, then the average radial velocity 
will be zero as there will be equal numbers of atoms moving towards and away from the 
observer.  We are interested in the fraction of atoms N(vr)dvr /N that have a radial velocity in the 

range vr → vr +dvr and thus have kinetic energy E = 1/2 mvr
2 (where m is the mass of an atom); 

this fraction can be found from Boltzmann's equation:

Eq. 6.55 N(vr )dvr
N

= Ce−E /kT dvr = Ce
−mvr

2 /2kT dvr

(No statistical weights appear in this equation because it is assumed that in a normal gas, 
there are sufficient states available such that particles are not limited by statistical weights.)  The 
constant C is a normalization constant, which we may ignore for the present.

This expression can be simplified further by noting that the most probable speed (the peak 
speed) in such an ideal gas is given by ′v = 2kT /m :
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Eq. 6.56 N(vr )dvr
N

= Ce
− vr

′v
⎛
⎝⎜

⎞
⎠⎟
2

dvr

We now use Equation 6.54 to write the radial velocity in terms of frequency:

Eq. 6.57 vr =
cΔν
νo

  and  dvr =
cd(Δν)
νo

= cdν
νo

And we also define a Doppler width ΔvD in terms of the peak speed:

Eq. 6.58 ΔνD = νo
′v
c
= νo

c
2kT
m

Then the strength of the absorption in the frequency range v → v +dv is proportional to        
e–(Δv/ΔvD)2dv (from Equation 6.56).  The normalized frequency distribution function for Doppler 
broadening is then a Gaussian:

Eq. 6.59 φ(ν) = 1
ΔνD π

e− Δν ΔνD( )2

The normalization constant was obtained by  setting ∫ ϕ(v) dv =1, and assuming ΔvD<< vo.    
Because the Doppler width increases with temperature, this profile will also be broader for 
higher temperatures.

Voigt Function
We now have two different line profiles resulting from different broadening mechanisms, and 

they  both act in combination to broaden the line.  The integrated cross section is given by 
Equation 6.37 as πe2f /mc; the differential cross section for a particular profile is then this value 
multiplied by the normalized distribution function for the profile.  Thus we have the dispersion 
cross section, where the damping constant is the sum of the γ values for all mechanisms:

Eq. 6.60 σν (Δν) =
πe2

mc
f ⋅φdisp (Δν) =

πe2

mc
f 1

π
γ 4π

(Δν)2 + γ 4π( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

And similarly, we have the corresponding Doppler cross section:

Eq. 6.61 σν (Δν) =
πe2

mc
f ⋅φDopp (Δν) =

πe2

mc
f 1

ΔνD π
e− Δν ΔνD( )2⎡

⎣
⎢

⎤

⎦
⎥

The two are combined using a convolution.

Convolution
The convolution (*) of two functions is defined as an integral:

Eq. 6.62 

� 

g(τ )∗h(τ ) ≡ g(t) ⋅h(τ − t)dt
−∞

∞∫
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We may visualize this process as reflecting the h function across the vertical axis, sliding it 
past the g function (by varying τ), and measuring the overlap area as a function of the offset τ.  
Only in regions where both functions are non-zero will the product make a contribution to the 
integral.  A simple example will illustrate the basic features.

Let g(t) = 1 for t = 0 → 2
0 elsewhere     

⎧
⎨
⎩

 and  let h(t) = 1 for t  = 1→ 4
0 elsewhere     

⎧
⎨
⎩

   (See Figure 6.8.)

Figure 6.8:  Convolution example functions g(t) and h(t)

 

g

t              

h

t

For the convolution integral, we need only consider regions where g(t) ≠ 0 (true for the 
interval t = 0 →2) and h(τ –t) ≠ 0 (true for τ – t = 1→4).  These conditions give two inequalities 
(1 ≤ τ –t ≤ 4 and 0 ≤ t ≤ 2) that can be solved to yield the values of interest for τ :  1 ≤ τ ≤ 6.  On 
this interval, g = h = 1, and g*h = ∫ dt.  At each offset value τ, we determine the width of the 
overlap Δt, which gives us the integral ∫ dt and thus, the convolution.

Figure 6.9:  Calculation of the convolution
g

g

h

h

! = 1

! = 2

! = 3

! = 4

! = 5

! = 6 !t = 0

!t = 1

!t = 2

!t = 2

!t = 1

!t = 0

The result of the convolution is presented graphically  in Figure 6.10; for this simple example, 
it is essentially a plot of Δt vs. τ.
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Figure 6.10:  Result of the convolution integral for the example
g*h

! 

It should be noted that the convolution profile in this case does not closely resemble either of 
the original profiles that combined to form it.  This will generally  be the case.  It should also be 
noted that convolutions abound in real life – at least in the real lives of astronomers.  For 
example, passing starlight through a slit to form a spectrum involves a convolution of the line 
profile with the profile of the slit, resulting in a modified line profile.  Similarly, observing an 
extended radio source with a radio telescope produces a convolution of the source profile with 
the antenna beam pattern.  In each case, the profile we observe is dependent on both the source 
and the instrument used to observe it.

For our particular problem, we need to combine a dispersion profile with a Doppler profile:

 Eq. 6.63 

σν (Δν) = πe2

mc
f ⋅φdisp (Δν)∗φDopp (Δν)

            = πe2

mc
f 1

π
γ 4π

(Δν)2 + γ 4π( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∗

1
ΔνD π

e
−

Δν
ΔνD

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

The convolution in this expression is called the Voigt function:

Eq. 6.64 

V (Δν,ΔνD ,γ ) ≡ φdisp (Δν)∗φDopp (Δν)

                      = 1
π

γ 4π
(Δν)2 + γ 4π( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∗ 1

ΔνD π
e
− Δν

ΔνD

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

                      = 1
π

γ 4π
(Δν − Δ ′ν )2 + γ 4π( )2

⎛

⎝
⎜

⎞

⎠
⎟−∞

∞

∫
1

ΔνD π
e
− Δ ′ν

ΔνD

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
d Δ ′ν( )

Or we may simplify the Voigt function by defining 

� 

u ≡ Δν
ΔνD

 and 

� 

a ≡ γ 4π
ΔνD

 :

Eq. 6.65 V (u,a) = 1
ΔνD π

a
π

e− ′u 2

u − ′u( )2 + a2−∞

∞

∫ d ′u

This function is tabulated in Gray (1976) and other sources.  The cross section is then as 
follows:

Eq. 6.66 

� 

σν = πe2

mc
f V (u,a)
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Hjerting Function
The Voigt function can also be defined in terms of the Hjerting function H(u,a):

Eq. 6.67 

� 

V (u,a) = 1
ΔνD π

H (u,a)

Eq. 6.68 H (u,a) = a
π

e− ′u 2

u − ′u( )2 + a2−∞

∞

∫ d ′u

The Hjerting function is tabulated in polynomial form in Gray (1976) and Allen (1973):

Eq. 6.69 H(u,a) = H0(u) + aH1(u) + a2H2(u) + a3H3(u) + ...

The damping parameter 

� 

a ≡ γ 4π
ΔνD

 is typically small, ≈ 0.1, meaning that the Doppler 

broadening usually  dominates.  The two profiles affect different parts of the line, with the line 
core shaped by Doppler broadening and the wings shaped by damping.

Microturbulence
Doppler broadening is caused by random atomic (thermal) motions, but the gas itself may 

acquire a bulk velocity that can also contribute to the line broadening.  Along the line of sight 
through the atmosphere there may be volumes of gas with different  radial velocities.  These will 
effectively change the cross section in the line and expand the photons and atoms that  can 
participate in the transition.  This is called microturbulence, which is a form of Doppler 
broadening.

Microturbulence can be accounted for by introducing a microturbulent velocity  vt , which 
further broadens the Doppler core:

Eq. 6.70 ′v = 2kT
m

⇒ 2kT
m

+ vt
2

Macroturbulence
Microturbulence involves motions on a small scale compared to the line-forming region.  

Motions on a large scale compared to the line-forming region produce macroturbulence, which 
requires a different approach.

In this case, different areas of the stellar disk or different layers in the atmosphere may have 
different radial velocities, shifting the profile for that region to the blue or the red.  The observed 
line profile for the star is then the sum of these Doppler-shifted profiles.

An example of macroturbulence can be found in the atmospheres of long-period variable 
stars (LPVs), which vary in brightness on time scales of about a year.  Shock waves emerge from 
the photosphere and propagate outwards through the atmosphere, imparting an outward radial 
velocity  to each layer, which changes gradually to an inward velocity as the layer falls back on 
the star.  The line-forming region of the atmosphere thus consists of numerous layers with 
different radial velocities; which layer dominates the line profile depends on the local 
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atmospheric conditions, which in turn vary with time as the shock waves move outwards.  
Absorption lines in an LPV spectrum are thus observed to vary their radial velocity over the 
period of the star.

Rotational Broadening
Many stars rotate, and this motion can produce radial velocity components and their resulting 

Doppler shifts for different parts of the star, as shown in Figure 6.11.

Figure 6.11:  Doppler shifts produced by stellar rotation
redshift

blueshift

For most stars the disk is not resolved, and photons from all parts of the disk are observed in 
the same beam.  The line profile is then the sum of contributions from the visible hemisphere of 
the star.  As redshifts and blueshifts should be equally  probable across the disk, the line will be 
effectively broadened without being displaced.

To determine the form of the rotational profile, we must establish a coordinate system on the 
star.  For simplicity we will assume the angle of inclination i – the angle between the rotational 
axis and the line of sight to the observer – to be 90°.  Then we select the x-axis as the line of 
sight and the z-axis as the rotational axis, which places the star's disk in the y-z plane and the 
observer in the equatorial (x-y) plane.

For an arbitrary point on the surface of the star we may define a latitude ϕ (the angle above 
the equatorial plane) and a longitude λ (the angle from the central meridian), as shown in Figure 
6.12.

Figure 6.12:  Coordinate system for rotational broadening, as seen (a) by the observer and (b) 
from above the pole of the rotating star

z

R

! = R cos "

" 
y

!

y

x

R !
y

x

x = ! cos #
y = ! sin #

#

$

ve = $R

a b

The x- and y-coordinates of a general point on the star's surface (λ, ϕ) are as follows:

Eq. 6.71 x = ρ cos λ = R cos ϕ cos λ
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Eq. 6.72 y = ρ sin λ = R cos ϕ sin λ

The radial velocity of a point on the star's equator is the x-component of the equatorial 
velocity:  vr = ve sin λ = ωR sin λ.  For a general point (λ, ϕ), the radial velocity is proportional to 
the y-coordinate:

Eq. 6.73 vr = ωρ sin λ = ωR cos ϕ sin λ =ωy = ve y/R

Figure 6.13:  The stellar disk, divided into strips of constant radial velocity
z

y

 
We may divide the visible disk of the star into strips of constant y, each with radial velocity  

vr = ve y/R and a weight proportional to the length (

� 

= 2z = 2 1− y2 ).  We may let R = 1 and recall 

that  vr/c = Δv/v , which allows the y-coordinate to be written in terms of the Doppler shift:

Eq. 6.74 y = vr
ve

= cΔν
veν

The rotational broadening profile can then be written as follows:

Eq. 6.75 φrot (Δν) ≈ 2 1− y2 = 2 1− cΔν
veν

⎛
⎝⎜

⎞
⎠⎟

2

The above was derived for an inclination of 90°; if this is not the case, then the equatorial 
velocity must be replaced by ve sin i , giving a modified profile:

Eq. 6.76 φrot (Δν) ≈ 2 1− cΔν
veν sin i

⎛
⎝⎜

⎞
⎠⎟

2

This rotational profile is elliptical.  However, as we saw in Chapter 2, real stars should 
exhibit limb darkening, which will have the effect of reducing the contribution made by large y 
values.  This adds another term to the profile of order 1 – y2, which is parabolic.  The resulting 
rotational profile is more complex:

Eq. 6.77 

� 

φrot (Δν ) = 3
3+ 2β

2
π
1− y2 + β

2
1− y2( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥  
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As before, y = cΔν
veν sin i

, and β is the first-order limb-darkening coefficient.  This is a 

parabolic-elliptical profile, with the exact form depending on the amount of limb-darkening.  
Figure 6.14 shows the two components of the rotational profile.  The combined profile (Equation 
6.77) lies between these two curves.

Rotational broadening is more important in early stars (O, B, and A), which have 
considerably higher rotational velocities (up to a few hundred km/s) than late stars (ve ≈ 2 km/s 
for the Sun).

Figure 6.14:  The rotational profile components – parabolic (

� 

1− y2 ) and elliptical (

� 

1− y2 )

� 

1− y2

� 

1− y2

Equivalent Width
The various broadening mechanisms serve to shift line absorption from the transition 

frequency to other neighboring frequencies.  The line strength is thus dependent not only on the 
depth of the line profile, but also on the width.  We need a simple way to quantify this line 
strength.

We begin by distinguishing between the line  and the continuum:  the line opacity  κvℓ is 
different from the continuum opacity κvc , and the line flux Fν varies across the line while the 
continuum flux Fc is essentially constant.  These fluxes can be used to define the line profile as 
one of two functions:

Eq. 6.78 

� 

Rν = Fc −Fν
Fc

=1− Fν
Fc

=1− r(ν)

As a measure of line strength we now define the equivalent width as follows:

Eq. 6.79 

� 

Wν ≡ Rν0

∞∫ dν = 1− r(ν )( )
0

∞∫ dν      or

Eq. 6.80 

� 

Wλ ≡ 1− r(λ)( )
0

∞∫ dλ

The equivalent width, illustrated in Figure 6.15, is measured in wavelength units – 
Ångstroms or milli-Ångstroms.  It provides a way to compare line strengths for lines that may 
have quite different profiles due to different broadening mechanisms.
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Figure 6.15:  Equivalent width
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The line strength depends on the absorption coefficient  for the line and the column density 
of absorbers, which is the integrated product of the number density and the column height:

Eq. 5.3  

� 

nc ≈ N(r)dr
R

∞∫
As previously noted, strong lines form high in the atmosphere where temperatures and source 

functions are lower, making the line appear darker; weak lines are formed deeper in the 
atmosphere at higher temperatures and source functions.

Examining a weak line, we will normally find a Doppler core.  As we increase the column 
density  for this line, more absorption occurs, the Doppler core deepens, and the equivalent width 
increases in proportion to the column density (W ∝ nc), as shown in Figure 6.16a.

Figure 6.16:  Growth of a line with increasing column density

a b c

As the column density  increases further, the core deepens and reaches to the zero flux level.  
All photons at the transition frequency  are then absorbed, and the line appears black; at this point 
the line is said to be saturated.  Additional absorbers have no more photons to absorb at  the 
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transition frequency, and the equivalent width increases very slowly with column density

� 

W ∝ lognc( ) , as shown in Figure 6.16b.

Eventually the damping wings grow large enough to increase the equivalent width more 
rapidly 

� 

W ∝ nc( ), as shown in Figure 6.16c.

Curve of Growth
A plot of the variation of equivalent width with column density is called the curve of 

growth.  Measured equivalent widths can thus be linked to column densities and used to 
determine abundances, excitation temperatures, ionization degrees, electron pressures, oscillator 
strengths, etc.

Figure 6.17:  The curve of growth
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The next chapter discusses the principal sources of opacity  that should be considered in 
analyzing the spectra of stars.
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CHAPTER 7:  Opacity Sources
There are several mechanisms by which matter may  absorb or scatter photons, and these 

result in different types of opacities with different frequency  dependences.  Sometimes the 
difference results from the type of particle involved in the interaction, and sometimes from the 
manner in which the particle interacts.  In general, we may distinguish between absorption – in 
which the energy of the photon is absorbed by  the matter – and scattering – in which the photon 
is merely  redirected, without significant loss of energy.  For each process there are several 
different mechanisms to understand.

Absorption Transitions
There are three basic types of absorption transitions to consider:  bound-bound transitions, 

bound-free transitions, and free-free transitions.

Bound-Bound Transitions
Bound-bound transitions refer to those in which the electron jumps from one bound state to 

another.  Such transitions between levels of reasonably well-defined energies produce 
absorption lines at  distinct frequencies.  So far our discussion has focused on this type of 
transition.

Figure 7.1:  A bound-bound transition

b

b

The absorption lines seen in stellar spectra are the result of bound-bound transitions.  This 
mechanism is not an important opacity  source at high temperatures (recall the spectra of O stars), 
but it can become dominant at low temperatures and high densities.  The absorption coefficient 
κν is generally difficult to determine over a range of frequencies because it is the sum of all the 
individual line opacities.
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Bound-Free Transitions
Bound-free transitions involve an electron moving from a bound state within the atom to 

become a free electron in the gas.  This is the process of ionization, or more specifically, 
photoionization, because the transition energy is supplied by the absorbed photon.  The energy 
required is the ionization energy plus whatever kinetic energy the free electron acquires; because 
this latter amount may  be any positive energy, bound-free absorption takes place over a wide 
range of photon energies, producing continuous absorption over a range of frequencies.

Figure 7.2:  A bound-free transition

b

b

f

To obtain the frequency dependence of bound-free transitions, we consider a hydrogen-like 
atom.  For such an atom with its electron in level n, all photons with E ≥ χn will be capable of 
producing ionization.  This results in a limiting value (λn) on the wavelength of a photon that 
may be absorbed by  an atom in level n.  The bound-free cross section then takes on the following 
form:

Eq. 7.1  

� 

σ bf ≈
λ3

n5
  for 

� 

λ ≤ λn

A plot of the bound-free cross section vs. wavelength will exhibit  sharp edges for a given 
atom.

Figure 7.3:  A bound-free absorption edge (at λn )

 

!

 

!n

 

! bf

For hydrogen, the limiting wavelengths can be found from equations developed in Chapter 3:

Eq. 7.2  λn =
n2

RH

= 911.7633n2Å
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This yields the following limits for the various series:
• λ1 = 911.76 Å  (the Lyman series limit)

• λ2 = 3647.1 Å  (the Balmer series limit)

• λ3 = 8205.9 Å  (the Paschen series limit)

• λ4 = 14588 Å  (the Brackett series limit), etc.

At visible wavelengths (4000 to 7000 Å), Paschen absorption should be dominant:

Figure 7.4:  Hydrogen bound-free absorption edges

 

! bf

 

!
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n = 2

n = 3
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The total bound-free cross section for hydrogen will be a sum over these different series, 
weighted by the level populations, which are dependent on temperature.  At low temperatures, 
the higher energy  levels are less populated, and they play a less important  role in the bound-free 
opacity.

Figure 7.5:  The Balmer jump
0 4000 8000

 

!

 

! bf

2000 6000

typical photographic 
spectral range

continuum 
flux

the Balmer 
jump

If hydrogen bound-free absorption is the principal opacity  source in a star's atmosphere, then 
the continuum flux should reflect the wavelength dependence of this source.  A sketch of this 
expected flux is shown in Figure 7.5.
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There is a pronounced change in the flux level that should occur just short of 4000 Å, due to 
the absorption edge associated with the Balmer series limit.  This is called the Balmer jump or 
the Balmer discontinuity.  It can be seen in the spectra of stars that (1) produce significant flux 
at the ultraviolet wavelengths where the jump occurs, and (2) have a temperature capable of 
exciting a sufficient number of hydrogen atoms to the second level without completely ionizing 
them.  Thus, the Balmer jump is typically observed in the spectra of B, A, and F stars.

Of course there are other species besides hydrogen that contribute to bound-free absorption, 
and we will want to include them all – at  least all of the significant species.  To do this we must 
combine the various σbf values into one κbf term.  The problem is as follows:

We have σ bf =
cm2

atom z in ionization stage i & excitation state n
 .

We need κ bf =
cm2

gram of stellar material
 .

So we will multiply σ bf λ( ) cm2

z, i, n
⎛
⎝⎜

⎞
⎠⎟

 by Nn

ΣNn

⎛
⎝⎜

⎞
⎠⎟ i,z

atoms in level n
total atoms z in i

⎛
⎝⎜

⎞
⎠⎟

  [Boltzmann equations]

  and by Ni

ΣNi

⎛
⎝⎜

⎞
⎠⎟ z

atoms in ionization stage i
total atoms z

⎛
⎝⎜

⎞
⎠⎟

  [Saha equations]

   and by 1
Az
NA

mole z
grams z

⎛
⎝⎜

⎞
⎠⎟
atoms z
mole z

⎛
⎝⎜

⎞
⎠⎟

    and by Xz
grams z
gram of *

⎛
⎝⎜

⎞
⎠⎟

 .

Then we will sum over n, i, and z to get κbf :

Eq. 7.3  κ bf λ( ) = Xz
NA

Az
Ni

ΣNi

⎛
⎝⎜

⎞
⎠⎟ z

Nn

ΣNn

⎛
⎝⎜

⎞
⎠⎟ i, z

σ bf λ, z,i,n( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥z

∑

Although hydrogen is the most abundant element in most stars, σbf (H) is dominant only in B, 
A, and F stars.  However, hydrogen does play an important role in the atmospheres of cooler 
stars through a species called the negative hydrogen ion (H –), depicted in Figure 7.6.

As we saw in Chapter 3, the first Bohr orbit can hold two electrons, as long as they have 
different spins, and a hydrogen atom is just barely capable of accomplishing this feat.  The 
negative hydrogen ion has only one bound state known, meaning that excitation is impossible 
and no bound-bound transitions may occur.  However, photoionization can easily remove the 
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extra electron from orbit as the ionization energy is only 0.754 eV.  This process (H – → H + e –) 
is designated as σbf (H –) and all photons with wavelengths less than 16,450Å may participate.

Figure 7.6:  Bohr model of the negative hydrogen ion (H –)

+

In order for H – to function as an opacity  source, it first must be able to form; this requires 
neutral hydrogen atoms and a supply of free electrons.  But the electrons cannot come from the 
hydrogen, for the bulk of it must remain neutral (which requires relatively low temperatures).  
Instead, the electrons must come from species that ionize more readily than hydrogen at low 
temperatures:  the metals.

H – absorption is thus very weak in hot stars, because its ionization equilibrium lies far to the 
right.  It is weak in very cool stars due to the lack of free electrons caused by insufficient 
ionization of metals.  But in intermediate stars of spectral type G, σbf (H –) is the dominant source 
of opacity.

Because σbf (H –) depends heavily on the presence of free electrons, the cross section is 
usually given in terms of the electron pressure, as in Figure 7.7:

Figure 7.7:  Free-free absorption cross section for H –

� 

σ bf H
−( )

per Pe

� 

λ

Free-Free Transitions
Free-free  transitions – also known as Bremsstrahlung – occur when a free electron in the 

vicinity  of an ion absorbs a photon, changing the electron's energy relative to the ion, as shown 
in Figure 7.8.  No bound states are involved.  The cross section for free-free transitions depends 
on the effective atomic number of the ion and on the speed of the electron (that is, on the 
temperature of the gas).  
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Figure 7.8:  A free-free transition
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For interactions with hydrogen nuclei (protons), we find the free-free cross section varies 
with the cube of the wavelength:  σff (H) ≈ λ3.  The electron can also interact  with a hydrogen 
atom, producing what is known as σff (H –) (even though there is no H – actually formed).  Figure 
7.9 illustrates the difference.

Figure 7.9:  Hydrogen free-free transitions

 

 

H ff

              

 

H ff
!

Normally Hbf
– and Hff

– are considered together, as shown in Figure 7.10.  Hff
– absorption 

becomes dominant at infrared wavelengths.  

Figure 7.10:  Total absorption cross section for H – 
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Scattering
Scattering refers to the deflection of photons by matter.  While the photon's direction is 

normally altered by  scattering, its energy is usually unchanged.  The scattering particle may  be a 
free electron, an atom, an ion, a molecule, etc.  The type of scattering depends on the energy of 
the photon and the resonant wavelength of the scattering particle.
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Photons can be scattered by  charged particles, primarily electrons.  We may envision the 
oscillating electric field of the wave inducing similar oscillations in the charged particle, and the 
resulting acceleration causes the charge to radiate.  As this radiation occurs over random 
directions, the incoming wave is effectively  scattered.  This classical explanation of scattering by 
a charge is known as Thomson scattering, or electron scattering, as electrons are the principal 
particles involved.

Thomson Scattering
The cross section for Thomson scattering σT can be derived classically; it is given here in 

terms of the classical electron radius re , which is obtained by equating the electron's electrostatic 
potential energy to its rest energy:

Eq. 7.4  e2

r
= mc2 ⇒ re =

e2

mec
2 = 2.829 ×10

−13 cm

A classical analysis then produces the Thomson cross section:

Eq. 7.5  σT = 8/3 πre
2 = 6.706 ×10–25 cm2/electron   ≈ 2/3 barn        where 1 barn = 10–24 cm2  

Thomson scattering will be important in stellar interiors and in the atmospheres of hot stars, 
where ionization of hydrogen produces copious amounts of free electrons.  (One might wonder 
about considering similar scattering off the positively charged hydrogen nuclei (protons) as well; 
however, because σ ≈ 1/m2 and 1/mp

2  ≈ 3 ×10–7 (1/me
2), the effect is considerably smaller, and 

contributions from nuclei may be safely ignored.)
This explanation of Thomson scattering is valid as long as the energy of the photon is small 

compared to the rest energy of the electron: 

Eq. 7.6  hν << mec
2      ⇒     hc/λ << mec

2      ⇒      λ >> h/mec  ≡ λc  ≈ 0.0243 Å

The limiting value on the wavelength is the Compton wavelength, λc.  This condition will 

normally be met by  free electrons at temperatures less than about 109 K (set kT ≈ mec
2), which 

covers most stellar interiors.
A photon of higher energy – such that λ = λc or less (X-rays and gamma rays) – may be able 

to accelerate the electron (rather than just bouncing off it), transferring some of its energy  and 
momentum to the electron, and thus diminishing the energy of the scattered photon.  This 
requires a quantum treatment of the photon as a particle, rather than a wave, resulting in a 
process called Compton scattering.

Compton Scattering
Compton scattering occurs when a high-energy photon scatters off a stationary electron, 

losing some energy in the process to the electron.  The scattering angle is shown in Figure 7.11.
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Figure 7.11:  Compton scattering
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The change in photon energy depends on the scattering angle θ :

Eq. 7.7  h ′ν = hν

1+ hν
mec

2 1− cosθ( )
⇒ hc

′λ
=

hc
′λ

1+ h
mecλ

1− cosθ( )

This provides the wavelength of the scattered photon:

Eq. 7.8  ′λ = λ 1+ h
mecλ

1− cosθ( )⎛
⎝⎜

⎞
⎠⎟
= λ + h

mec
1− cosθ( )

And the change in wavelength is as follows:

Eq. 7.9  Δλ = λ' – λ = λc(1 – cos θ) = 2 λc sin2(θ/2)

Again, λc ≡ h/mec = 0.0243 Å is the Compton wavelength for the electron.  Because this 
value is so small, the change in the energy  of a scattered photon will be significant only for high 
energy photons, with λ = λc or less.  Low energy photons are simply  scattered over 4π steradians 
with essentially no loss of energy (Thomson scattering).

Rayleigh Scattering
Photons may also be scattered off bound electrons in atoms and molecules.  For these 

interactions, we must require that the photon energy  be less than the energy difference between 
any adjacent bound states (hv < ΔEnm) in order that no transition occurs.  Given this restriction, 
the cross section for Rayleigh scattering can be written in terms of the Thomson cross section:

Eq. 7.10 

� 

σ R =σ T
1

νo ν( )2 −1[ ]2
  where  hvo ≈ ΔEnm 

Now for hv << ΔEnm , v << vo , and v/vo << 1.  This yields the normal approximation for 
Rayleigh scattering:

Eq. 7.11 σ R = σT

ν νo( )4

1− ν νo( )2⎡
⎣

⎤
⎦
2 ≈ σT

ν
νo

⎛
⎝⎜

⎞
⎠⎟

4

= σT
λo
λ

⎛
⎝⎜

⎞
⎠⎟
4
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The result is that there is a strong wavelength dependence for Rayleigh scattering, such that 
short wavelength photons are scattered much more readily.  This of course is responsible for the 
blue skies we observe in our atmosphere, where visible photons from the Sun scatter off the 
electrons in nitrogen and oxygen molecules in the air.

As a source of stellar opacity, Rayleigh scattering can become important at the lower 
temperatures found in the atmospheres of cool stars.  There, the most likely targets are neutral 
hydrogen atoms, giving a cross section as follows:

Eq. 7.12 σ R = σT
λL

λ
⎛
⎝⎜

⎞
⎠⎟
4

Here, λL = 1026 Å, which is a weighted average of the Lyman wavelengths – used because 
most of the hydrogen atoms should be in the ground state at these temperatures.  Again, the 
limits on Rayleigh scattering require that λ > λL , which means that the Rayleigh cross section 
will be smaller than the Thomson cross section.  However, at these low temperatures, free 
electrons are not particularly  plentiful, and Rayleigh scattering may be dominant over Thomson 
scattering.

Novotny (1973, pp 136-150) provides figures that  combine all these sources to give opacities 
for stars of different temperatures.

In the next chapter we will try to deduce the structure that results when matter and radiation 
interact within the stellar atmosphere.
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