

Towards Forensic Science 2.0

Abstract book

The Hague

August 20 – 24, 2012

6th European Academy of Forensic Science Conference

Microanalysis of Chainsaw Tool Marks on Bone Using SEM-EDS

10:30 - 11:00

AUGUST, 22

JA Bailey

University of North Carolina Wilmington, United States of America SBCG Chang, EJ Vermeij, RRR Gerretsen

ABSTRACT

Chainsaw tool marks on bone may include class and individual identification characteristics. The purpose of this study is twofold; first to evaluate kerf marks in cortical bone to determine the quality of individual characteristics with the Scanning Electron Microscope (SEM) and second to use the Energy Dispersive X-Ray Spectroscopy (EDS) to analyze any trace element transfer to the bone from the metal in the chainsaw teeth.

A Quanta model 400 environmental scanning electron microscope (ESEM) was operated in low vacuum mode with a chamber pressure of 0.2 mbar water vapor to examine the bone samples. The acceleration voltage was 20 kV with a working distance of approximately 10 mm. EDS spectra were acquired with a Si(Li) detector for 30 live seconds per measured area.

The SEM micrographs were evaluated using a scale of +1 to +3 depending on the quality of striations. A +1 evaluation indicated poor quality or no striations present, +2 indicated some striations but not enough for a positive identification and +3 evaluation indicated there were sufficient striations for a match. Of 21 bone micrographs examined for tool marks, 3 (14%) yielded no useful comparison data, 1 (5%) had +1 tool marks, 14 (67%) had +2 tool marks and 3 (14%) had +3 tool marks. Microanalysis of trace elements using EDS yielded 4 (19%) chainsaw tool marks with no useful data. The presence of iron was not detected in 2 (10%) chainsaw tool marks; however, the presence of iron was detected in 15 (71%) of the tool marks.

In conclusion, analyzing chainsaw cut marks with SEM-EDS can be an effective procedure for visualizing striations in bone for comparisons. Even though every chainsaw cut did not have sufficient striations for comparisons, 3 (14%) micrographs could be used for comparison purposes. EDS spectra are also useful in identifying trace elements transferred from the chainsaw to bone. In 15 (71%) of the chainsaw tool marks in this study, iron was identified in the tool marks.

KEYWORDS

Tool marks Chainsaw marks Scanning Electron Microscope